Displaying all 4 publications

Abstract:
Sort:
  1. Bnfaga AA, Lee KW, Than LTL, Amin-Nordin S
    J Biomed Sci, 2023 Mar 23;30(1):19.
    PMID: 36959635 DOI: 10.1186/s12929-023-00913-7
    BACKGROUND: Lactobacilli are essential microbiota that maintain a healthy, balanced vaginal environment. Vaginitis is a common infection in women during their reproductive years. Many factors are associated with vaginitis; one of them is the imbalance of microbiota in the vaginal environment. This study aimed to evaluate the antimicrobial properties of Lactobacillus delbrueckii 45E (Ld45E) against several species of bacteria, namely, Group B Streptococcus (GBS), Escherichia coli, Klebsiella spp., and Candida parapsilosis, as well as to determine the concentration of interleukin-17 (IL-17) in the presence of Ld45E.

    METHODS: The probiotic characteristics of Ld45E were evaluated by examining its morphology, pH tolerance, adhesive ability onto HeLa cells, hemolytic activity, antibiotic susceptibility, and autoaggregation ability. Then, the antimicrobial activity of Ld45E was determined using Ld45E culture, cell-free supernatant, and crude bacteriocin solution. Co-aggregation and competition ability assays against various pathogens were conducted. The immunoregulatory effects of Ld45E were analyzed by measuring the proinflammatory cytokine IL-17. A p-value less than 0.05 was considered statistical significance.

    RESULTS: Ld45E is 3-5 mm in diameter and round with a flat-shaped colony. pH 4 and 4.5 were the most favorable range for Ld45E growth within 12 h of incubation. Ld45E showed a strong adhesion ability onto HeLa cells (86%) and negative hemolytic activities. Ld45E was also sensitive to ceftriaxone, cefuroxime, ciprofloxacin, and doxycycline. We found that it had a good autoaggregation ability of 80%. Regarding antagonistic properties, Ld45E culture showed strong antimicrobial activity against GBS, E. coli, and Klebsiella spp. but only a moderate effect on C. parapsilosis. Cell-free supernatant of Ld45E exerted the most potent inhibitory effects at 40 °C against all genital pathogens, whereas bacteriocin showed a robust inhibition at 37 °C and 40 °C. The highest co-aggregation affinity was observed with GBS (81%) and E. coli (40%). Competition ability against the adhesion of GBS (80%), E. coli (76%), Klebsiella (72%), and C. parapsilosis (58%) was found. Ld45E was able to reduce the induction of the proinflammatory protein IL-17.

    CONCLUSIONS: Ld45E possessed antimicrobial and immunoregulatory properties, with better cell-on-cell activity than supernatant activity. Thus, Ld45E is a potential probiotic candidate for adjunct therapy to address vaginal infections.

    Matched MeSH terms: Lactobacillus delbrueckii*
  2. Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, et al.
    Molecules, 2020 Nov 16;25(22).
    PMID: 33207534 DOI: 10.3390/molecules25225332
    Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.
    Matched MeSH terms: Lactobacillus delbrueckii
  3. Mohd Nor N'N, Abbasiliasi S, Marikkar MN, Ariff A, Amid M, Lamasudin DU, et al.
    J Food Sci Technol, 2017 Jan;54(1):164-173.
    PMID: 28242914 DOI: 10.1007/s13197-016-2448-9
    This paper reports on the extraction, partial characterization and the potential application of crude polysaccharides from defatted coconut residue as a prebiotic. The coconut residue was defatted and extracted to obtain the crude polysaccharides and its physicochemical properties were determined. The crude polysaccharides were assessed for monosaccharide composition, total carbohydrate content, reducing sugar concentration and protein content determination. The functional group and structural elucidation of crude polysaccharides was also done using Fourier transform infrared spectra analysis. The product was then subjected to artificial human gastric juice treatment to determine digestibility. Finally, an in vitro proliferation and acid production by two probiotic bacteria namely Lactobacillus casei Shirota and Lactobacillus bulgaricus were included in this study. It was found that the defatted coconut residue contained ash (0.54%), moisture (55.42%), protein (1.69%), crude fat (17.26%) and carbohydrate (25.73%). The percentage of crude polysaccharides extracted was 0.73 ± 0.04. The two fractions of monosaccharides obtained were glucose and fructose. Total carbohydrate content of DCR was 13.35% (w/v). The quantitative value of the reducing sugars obtained was 20.71%. Protein content in the crude polysaccharides was 0.009% and the peaks which indicated the presence of protein were observed at around 1640 cm(-1) (amide I) and 1530 cm(-1) (amide II). DCR crude polysaccharides were highly resistant (88%) to hydrolysis when subjected to artificial human gastric juice. The product was found to markedly stimulate two tested probiotics to proliferate and produce organic acids. All the above findings are supportive of the fact that polysaccharides extracted from DCR, an industrial waste, have a vast potential to be exploited as novel prebiotics.
    Matched MeSH terms: Lactobacillus delbrueckii
  4. Fazilah, N. F., Zani, N. F. A., Wasoh, H., Ariff, A., Halim, M.
    MyJurnal
    Nowadays, functional food market is dominated by dairy-based probiotic products, mainly
    yogurt. The nutritional values of yogurt can be further enhanced by the inclusion of miracle
    fruit (Synsepalum dulcificum) and potential probiotic Lactococcus lactis Gh1. The present
    work investigated the anti-oxidative capacity and survivability of probiotic strains of six
    yogurts fortified with S. dulcificum pulp extract and encapsulated L. lactis Gh1 (in
    alginate-starch coating agent via extrusion technique). The flavonoid contents (TFC) were not
    significantly different between yogurts, whereas the phenolic contents (TPC) showed an
    increasing trend throughout the storage. Among the yogurts, the one supplemented with both
    S. dulcificum and encapsulated L. lactis Gh1 showed the highest TFC (1.18 µg QE/mL) and
    TPC (15.382 μg GAE/mL). The antioxidant assay (DPPH) showed a gradual increase on the
    first 7 d, but decreased afterward. In comparison, yogurts fortified with S. dulcificum demonstrated higher antioxidant activity (± 80% DPPH inhibition) than the plain yogurts (± 50%
    DPPH inhibition). The viability of starter cultures (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) drastically increased during the first week (log 8 ~ 10
    CFU/mL) especially for yogurts containing free cell L. lactis, but subsequently decreased ( log
    6 ~ 8 CFU/mL). The viability of L. lactis Gh1 in yogurts maintained at high count (log 9.43
    and 9.04 CFU/mL) throughout 21 d when it was being encapsulated. In general, the fortification of S. dulcificum extract with microencapsulated L. lactis Gh1 had greatly enhanced the
    quality and potential benefits of the functional yogurts.
    Matched MeSH terms: Lactobacillus delbrueckii
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links