Displaying all 5 publications

Abstract:
Sort:
  1. Ho SF, Sam CT, Embi GB
    Occup Med (Lond), 1998 Sep;48(6):369-73.
    PMID: 10024732
    This study was conducted as part of the Human Exposure Assessment Location (HEAL) Project which comes under the United Nations Environment Programme/World Health Organisation (UNEP/WHO) Global environmental Monitoring System (GEMS). The objective of the study was to evaluate workers' exposure to lead in industries with the highest exposure. All subjects were interviewed about their occupational and smoking histories, the use of personal protective equipment and personal hygiene. The contribution of a dietary source of lead intake from specified foods known to contain lead locally and personal air sampling for lead were assessed. A total of 61 workers from two PVC compounding and 50 workers from two lead acid battery manufacturing plants were studied together with 111 matched controls. In the PVC compounding plants the mean lead-in-air level was 0.0357 mg/m3, with the highest levels occurring during the pouring and mixing operations. This was lower than the mean lead-in-air level of 0.0886 mg/m3 in the lead battery manufacturing plants where the highest exposure was in the loading of lead ingots into milling machines. Workers in lead battery manufacturing had significantly higher mean blood lead than the PVC workers (means, 32.51 and 23.91 mcg/100 ml respectively), but there was poor correlation with lead-in-air levels. Among the lead workers, the Malays had significantly higher blood lead levels than the Chinese (mean blood levels were 33.03 and 25.35 mcg/100 ml respectively) although there was no significant difference between the two ethnic groups in the control group. There were no significant differences between the exposed and control group in terms of dietary intake of specified local foods known to contain lead. However, Malays consumed significantly more fish than the Chinese did. There were no ethnic differences in the hours of overtime work, number of years of exposure, usage of gloves and respirators and smoking habits. Among the Malays, 94.3% eat with their hands compared with 9.2% of the Chinese. Workers who ate with bare hands at least once a week had higher blood lead levels after adjusting for lead-in-air levels (mean blood lead was 30.2 and 26.4 mcg/100 ml respectively). The study indicated that the higher blood lead levels observed in the Malay workers might have been due to their higher exposure and eating with bare hands.
    Matched MeSH terms: Lead/adverse effects*
  2. Mahat NA, Muktar NK, Ismail R, Abdul Razak FI, Abdul Wahab R, Abdul Keyon AS
    Environ Sci Pollut Res Int, 2018 Oct;25(30):30224-30235.
    PMID: 30155632 DOI: 10.1007/s11356-018-3033-8
    Contamination of toxic metals in P. viridis mussels has been prevalently reported; hence, health risk assessment for consuming this aquaculture product as well as the surrounding surface seawater at its harvesting sites appears relevant. Since Kampung Pasir Puteh, Pasir Gudang is the major harvesting site in Malaysia, and because the last heavy metal assessment was done in 2009, its current status remains unclear. Herein, flame atomic absorption spectrometry and flow injection mercury/hydride system were used to determine the concentrations of Pb, Cd, Cu and total Hg in P. viridis mussels and surface seawater (January-March 2015), respectively. Significantly higher concentrations of these metals were found in P. viridis mussels (p 
    Matched MeSH terms: Lead/adverse effects
  3. Hashim JH, Hashim Z, Omar A, Shamsudin SB
    Asia Pac J Public Health, 2000;12(2):65-70.
    PMID: 11836921
    The objective of this article is to study the influence of exposure and socio-economic variables on the blood lead level of Malaysian school children. Data on respirable lead and blood lead of 346 school children were obtained from Kuala Lumpur (urban), Kemaman (semi-urban) and Setiu (rural). Respirable lead and blood lead were highest for Kuala Lumpur (95 ng/m3 and 5.26 micrograms/dL) followed by Kemaman (27 ng/m3 and 2.81 micrograms/dL) and Setiu (15 ng/m3 and 2.49 micrograms/dL), and the differences were statistically significant. The percentage of school children with excessive blood lead of 10 micrograms/dL or greater was 6.36% overall, and highest for Kuala Lumpur (11.73%). Regression analyses show that urban children are at higher risk of exhibiting excessive blood lead levels. Kuala Lumpur's school children have a 25 times greater risk of having excessive blood lead levels when compared to Kemaman's and Setiu's school children. Respirable and blood lead were correlated (r = 0.999, p = 0.021). Urban school children acquire higher blood lead levels than their rural and semi-urban counterparts, even after controlling for age, sex, parents' education and income levels. In conclusion, it is time that lead in the Malaysian environment and population be monitored closely, especially its temporal and spatial variability. Only then can a comprehensive preventive strategy be implemented.
    Matched MeSH terms: Lead/adverse effects
  4. Abduljaleel SA, Shuhaimi-Othman M
    Pak J Biol Sci, 2013 Nov 15;16(22):1551-6.
    PMID: 24511699
    The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments.
    Matched MeSH terms: Lead/adverse effects*
  5. Meramat A, Rajab NF, Shahar S, Sharif RA
    J Nutr Health Aging, 2017;21(5):539-545.
    PMID: 28448084 DOI: 10.1007/s12603-016-0759-1
    BACKGROUND: A cross sectional study was conducted in a group of 317 subjects older than 60 in Malaysia, aimed to determine risk factors associated with cognitive impairment in older adults, focusing on trace elements and DNA damage.

    METHOD: Cognitive decline was determined by Montreal Cognitive Assessment (MoCA). Oxidative stress markers (malondialdehyde-MDA and superoxide dismutase-SOD) were determined and DNA damage was assayed using Alkaline Comet Assay. Toenail samples were taken and analyzed using ICP-MS to determine trace element levels.

    RESULTS: A total of 62.1 % of subjects had cognitive impairment. Subjects with cognitive impairment had significantly higher levels of MDA and DNA damage as compared to the group with normal cognitive function; MDA (2.07 ± 0.05 nmol/L vs 1.85 ± 0.06 nmol/L) (p<0.05) and DNA damage (% Tail Density, 14.52 ± 0.32 vs 10.31 ± 0.42; Tail Moment, 1.79 ± 0.06 vs 1.28 ± 0.06) (p<0.05 for all parameters). However, the level of SOD among subjects with cognitive impairment (6.67 ± 0.33 u.e/min/mg protein) was lower than the level among those with normal cognitive functions (11.36 ± 0.65 u.e/min/mg protein) (p<0.05). Multiple logistic regression revealed the predictors for cognitive impairment among the subjects were DNA damage (Adjusted odd ratio [OR], 1.37; 95% confidence interval [CI], 1.18-1.59), level of trace elements in toenails namely, lead (OR, 2.471; CI, 1.535-3.980) and copper (OR, 1.275; CI, 1.047-1.552) (p<0.05).

    CONCLUSION: High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.

    Matched MeSH terms: Lead/adverse effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links