Displaying all 6 publications

Abstract:
Sort:
  1. Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A
    Int J Nanomedicine, 2019;14:5753-5783.
    PMID: 31413573 DOI: 10.2147/IJN.S192779
    Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
    Matched MeSH terms: Liver/physiology*
  2. Carvajal-Zarrabal O, Nolasco-Hipolito C, Aguilar-Uscanga MG, Melo Santiesteban G, Hayward-Jones PM, Barradas-Dermitz DM
    Biomed Res Int, 2014;2014:595479.
    PMID: 24860825 DOI: 10.1155/2014/595479
    Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α -amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α -amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil.
    Matched MeSH terms: Liver/physiology*
  3. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
    Matched MeSH terms: Liver/physiology*
  4. Jayusman PA, Budin SB, Ghazali AR, Taib IS, Louis SR
    Pak J Pharm Sci, 2014 Nov;27(6):1873-80.
    PMID: 25362611
    Indiscriminate application of organophosphate (OP) pesticides has led to environmental pollution and severe health problems. The aim of the present study was to evaluate the effect of palm oil tocotrienol-rich fraction (TRF) on biochemical and morphological changes of the liver in rats treated with fenitrothion (FNT), a type of OP pesticide. A total of 28 male Sprague-Dawley rats were divided into four groups; control group, TRF-supplemented group, FNT-treated group and TRF+FNT group. TRF (200 mg/kg) was supplemented 30 minutes prior to FNT (20 mg/kg) administration, both orally for 28 consecutive days. Following 28 days of treatment, plasma biochemical changes and liver morphology were evaluated. The body and absolute liver weights were significantly elevated in TRF+FNT group compared to FNT group. TRF administration significantly decreased the total protein level and restored the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in TRF + FNT group. In contrast, total bilirubin level, γ-glutamyltranferase (GGT) and cholinesterase activity in TRF + FNT group did not significantly differ from FNT group. Administration of TRF also prevented FNT-induced morphological changes of liver as observed by electron microscope. In conclusion, TRF supplementation showed potential protective effect towards biochemical and ultrastructural changes in liver induced by FNT.
    Matched MeSH terms: Liver/physiology
  5. Hashim H, Mughrabi FF, Ameen M, Khaledi H, Ali HM
    Molecules, 2012 Aug 03;17(8):9306-20.
    PMID: 22864239 DOI: 10.3390/molecules17089306
    Indolic compounds have attracted a lot of attention due to their interesting biological properties. The present study was performed to evaluate the subacute toxicity and anti-ulcer activity of BClHC against ethanol-induced gastric ulcers. Experimental animal groups were orally pre-treated with different doses of BClHC (50, 100, 200 and 400 mg/kg) in 10% Tween 20 solution (vehicle). Blank and ulcer control groups were pre-treated with vehicle. The positive group was orally pretreated with 20 mg/kg omeprazole. After one hour, all groups received absolute ethanol (5 mL/kg) to generate gastric mucosal injury except the blank control group which was administered the vehicle solution. After an additional hour, all rats were sacrificed, and the ulcer areas of the gastric walls determined. Grossly, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with either derivative or omeprazole resulted in significant protection of gastric mucosal injury. Flattening of gastric mucosal folds was also observed in rats pretreated with BClHC. Histological studies of the gastric wall of ulcer control group revealed severe damage of gastric mucosa, along with edema and leucocytes infiltration of the submucosal layer compared to rats pre-treated with either BClHC or omeprazole where there were marked gastric protection along with reduction or absence of edema and leucocytes infiltration of the submucosal layer. Subacute toxicity study with a higher dose of derivative (5 g/kg) did not manifest any toxicological signs in rats. In conclusions, the present finding suggests that benzyl N'-(5-chloroindol-3-ylmethylidene)hydrazinecarbodithioate promotes ulcer protection as ascertained by the comparative decreases in ulcer areas, reduction of edema and leucocytes infiltration of the submucosal layer.
    Matched MeSH terms: Liver/physiology
  6. Rao PJ, Kolla SD, Elshaari F, Elshaari F, Awamy HE, Elfrady M, et al.
    Infect Disord Drug Targets, 2015;15(2):131-4.
    PMID: 26205799
    BACKGROUND: Piperine is isolated from Piper nigrum popularly known as black pepper. Previous studies have demonstrated the beneficial effects of piperine in various health conditions. Additionally, it is a powerful bioenhancer for many drugs. Piperine extract is believed to potentiate the effect of drugs by several folds. The present study is focused on its individual effect on liver function.

    MATERIALS AND METHODS: A total of 30 CF-1 albino mice obtained from the animal house of faculty of Medicine, Benghazi University, Benghazi, Libya were included in the study. These mice were fed with high cholesterol diet and divided into 2 groups. Twenty mice were administered piperine at a dose of 5mg/kg body weight. Piperine was isolated in Department of Pharmacognosy, Faculty of Pharmacy, Benghazi University, Benghazi and 10 mice were not administered piperine but fed with high fat diet. These mice were anesthetized with ketamine and halothane and blood was drawn from each mouse before the study and after three weeks by cardiocentesis. Serum transaminases (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]), alkaline phosphatase and total protein were measured by authenticated methods.

    RESULTS: Serum alanine amino transferase was significantly elevated (p=0.0002) in group A mice after the administration of Piperine extract for three weeks compared to those of group B mice. Serum aspartate amino transferase was elevated significantly (p=0.046) and alkaline phosphatase (p= 0.0001) also was significantly increased after the administration of piperine. Serum total protein (p= 0.011) values were significantly decreased after the use of piperine for three weeks in group A mice.

    CONCLUSION: This study showed that there might have been a considerable damage to liver with piperine extract. Further research may be required to prove this damage to liver function.

    Matched MeSH terms: Liver/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links