Displaying all 10 publications

Abstract:
Sort:
  1. Jessie K, Fong MY, Devi S, Lam SK, Wong KT
    J Infect Dis, 2004 Apr 15;189(8):1411-8.
    PMID: 15073678
    Dengue viral antigens have been demonstrated in several types of naturally infected human tissues, but little is known of whether these same tissues have detectable viral RNA. We studied tissue specimens from patients with serologically or virologically confirmed dengue infections by immunohistochemistry (IHC) and in situ hybridization (ISH), to localize viral antigen and RNA, respectively. IHC was performed on specimens obtained from 5 autopsies and 24 biopsies and on 20 blood-clot samples. For ISH, antisense riboprobes to the dengue E gene were applied to tissue specimens in which IHC was positive. Viral antigens were demonstrated in Kupffer and sinusoidal endothelial cells of the liver; macrophages, multinucleated cells, and reactive lymphoid cells in the spleen; macrophages and vascular endothelium in the lung; kidney tubules; and monocytes and lymphocytes in blood-clot samples. Positive-strand viral RNA was detected in the same IHC-positive cells found in the spleen and blood-clot samples. The strong, positive ISH signal in these cells indicated a high copy number of viral RNA, suggesting replication.
    Matched MeSH terms: Liver/virology
  2. Zhao MY, Li D
    Food Environ Virol, 2021 03;13(1):74-83.
    PMID: 33449335 DOI: 10.1007/s12560-020-09452-y
    Hepatitis E virus (HEV) has been frequently detected from pork liver and liver products, which can usually cause self-limiting diseases in healthy adults, yet may result in fatality in immunosuppressed groups. Nevertheless, there is so far no standardized method for HEV detection available from pork liver and/or liver products. The present study aimed to optimize the virus extraction method of HEV from raw pork liver, which is often consumed in Asia undercooked to avoid a grainy texture. By comparing different sample preparation protocols and by applying the selected protocol to 60 samples collected from Singapore retail markets, we demonstrated that homogenization of 0.25 g raw pork liver with FastPrep™ Lysing Matrix Y containing yttria-stabilized zircondium oxide beads in 2 ml tubes and with harsh mechanical force at 6 ms-1, 40 s/cycle, for 5 cycles with 300 s pause time after each cycle is promising in both releasing the potentially intracellular viruses and resulting in satisfactory virus recovery rates (> 1%). A high prevalence (52%) of HEV genome was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) from the 60 samples collected from Singapore retail markets imported from Indonesia, Australia and Malaysia. However, RNase treatment decreased the HEV prevalence to 33.3%, and all of the 20 positive samples were with high RT-qPCR Ct values above 35, suggesting that the positive RT-qPCR signals maybe largely due to the inactive viruses and/or exposed HEV RNA traces in raw pork liver products. Therefore, conscious care should be taken when interpreting molecular detection results of viruses from food samples to be correlated with public health risks.
    Matched MeSH terms: Liver/virology*
  3. Anpuanandam K, Selvarajah GT, Choy MMK, Ng SW, Kumar K, Ali RM, et al.
    BMC Vet Res, 2021 Jan 06;17(1):9.
    PMID: 33407487 DOI: 10.1186/s12917-020-02700-0
    BACKGROUND: A new domestic cat hepadnavirus (DCH, family Hepadnaviridae) was first reported from whole blood samples of domestic cats in Australia in 2018, and from cat serum samples in Italy in 2019. The pathogenesis of DCH is unknown, but it was reported in cats with viraemia (6.5-10.8%), chronic hepatitis (43%) and hepatocellular carcinoma (28%). Recent reports suggest that DCH resembles the human hepatitis B virus (HBV) and its related hepatopathies. This study aims to detect and characterize DCH among domestic cats in Malaysia. A cross-sectional study was performed on 253 cats, of which 87 had paired blood and liver samples, entailing whole-genome sequencing and phylogenetic analysis of DCH from a liver tissue sample.

    RESULTS: Among the 253 cats included in this study, 12.3% of the whole blood samples tested positive for DCH. The detection rate was significantly higher in pet cats (16.6%, n = 24/145) compared to shelter cats (6.5%, n = 7/108). Liver tissues showed higher a DCH detection rate (14.9%, n = 13/87) compared to blood; 5 out of these 13 cats tested positive for DCH in their paired liver and blood samples. Serum alanine transaminase (ALT) was elevated (> 95 units/L) in 12 out of the 23 DCH-positive cats (52.2%, p = 0.012). Whole-genome sequence analysis revealed that the Malaysian DCH strain, with a genome size of 3184 bp, had 98.3% and 97.5% nucleotide identities to the Australian and Italian strains, respectively. The phylogenetic analysis demonstrated that the Malaysian DCH genome was clustered closely to the Australian strain, suggesting that they belong to the same geographically-determined genetic pool (Australasia).

    CONCLUSIONS: This study provided insights into a Malaysian DCH strain that was detected from a liver tissue. Interestingly, pet cats or cats with elevated ALT were significantly more likely to be DCH positive. Cats with positive DCH detection from liver tissues may not necessarily have viraemia. The impact of this virus on inducing liver diseases in felines warrants further investigation.

    Matched MeSH terms: Liver/virology*
  4. Sohaimi NM, Bejo MH, Omar AR, Ideris A, Isa NM
    J Vet Sci, 2018 Nov 30;19(6):759-770.
    PMID: 30173491 DOI: 10.4142/jvs.2018.19.6.759
    Fowl adenovirus (FAdV) is distributed worldwide and causes economic losses in the poultry industry. The objectives of this study were to determine the hexon and fiber gene changes in an attenuated FAdV isolate from Malaysia in specific pathogen-free chicken embryonated eggs (SPF CEE) and its infectivity in commercial broiler chickens. SPF CEE were inoculated with 0.1 mL FAdV inoculum via the chorioallantoic membrane (CAM) for 20 consecutive passages. The isolate at passage 20 (E20), with a virus titer of 108.7TCID50/mL (TCID50, 50% tissue culture infective dose), was inoculated (0.5 mL) into one-day-old commercial broiler chicks either via oral or intraperitoneal routes. The study demonstrated that 100% embryonic mortality was recorded from E2 to E20 with a delayed pattern at E17 onwards. The lesions were confined to the liver and CAM. Substitutions of amino acids in the L1 loop of hexon at positions 49 and 66, and in the knob of fiber at positions 318 and 322 were recorded in the E20 isolate. The isolate belongs to serotype 8b and is non-pathogenic to broiler chickens, but it is able to induce a FAdV antibody titer. It appears that molecular changes in the L1 loop of hexon and the knob of fiber are markers for FAdV infectivity.
    Matched MeSH terms: Liver/virology
  5. Umareddy I, Tang KF, Vasudevan SG, Devi S, Hibberd ML, Gu F
    J Gen Virol, 2008 Dec;89(Pt 12):3052-3062.
    PMID: 19008393 DOI: 10.1099/vir.0.2008/001594-0
    Outbreaks of dengue disease are constant threats to tropical and subtropical populations but range widely in severity, from mild to haemorrhagic fevers, for reasons that are still elusive. We investigated the interferon (IFN) response in infected human cell lines A549 and HepG2, using two strains (NGC and TSV01) of dengue serotype 2 (DEN2) and found that the two viruses exhibited a marked difference in inducing type I IFN response. While TSV01 infection led to activation of type I antiviral genes such as EIF2AK2 (PKR), OAS, ADAR and MX, these responses were absent in NGC-infected cells. Biochemical analysis revealed that NGC but not TSV01 suppressed STAT-1 and STAT-2 activation in response to type I IFN (alpha and beta). However, these two strains did not differ in their response to type II IFN (gamma). Although unable to suppress IFN signalling, TSV01 infection caused a weaker IFN-beta induction compared with NGC, suggesting an alternative mechanism of innate immune escape. We extended our study to clinical isolates of various serotypes and found that while MY10245 (DEN2) and MY22713 (DEN4) could suppress the IFN response in a similar fashion to NGC, three other strains of dengue [EDEN167 (DEN1), MY02569 (DEN1) and MY10340 (DEN2)] were unable to suppress the IFN response, suggesting that this difference is strain-dependent but not serotype-specific. Our report indicates the existence of a strain-specific virulence factor that may impact on disease severity.
    Matched MeSH terms: Liver/virology*
  6. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed Hassan S
    Virol J, 2019 02 27;16(1):26.
    PMID: 30813954 DOI: 10.1186/s12985-019-1127-7
    BACKGROUND: Dengue continues to be a major international public health concern. Despite that, there is no clinically approved antiviral for treatment of dengue virus (DENV) infections. In this study, geraniin extracted from the rind of Nephelium lappaceum was shown to inhibit the replication of DENV-2 in both in vitro and in vivo experiments.

    METHODS: The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection.

    RESULTS: Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum.

    CONCLUSIONS: Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.

    Matched MeSH terms: Liver/virology
  7. Mohd Abd Razak MR, Norahmad NA, Md Jelas NH, Jusoh B, Muhammad A, Mohmad Misnan N, et al.
    BMC Res Notes, 2019 Apr 03;12(1):206.
    PMID: 30944031 DOI: 10.1186/s13104-019-4242-z
    OBJECTIVE: The purpose of this study was to profile and identify the endothelial cell biology related genes that are affected by dengue virus infection in the liver tissue of AG129 mice, with and without Carica papaya leaf juice treatment.

    RESULTS: The dengue fever mouse model was established by intraperitoneal inoculation of dengue virus, New Guinea C strain at 2 × 106 PFU. Daily oral administration of 1000 mg/kg freeze-dried C. papaya leaf juice (FCPLJ) was done starting from day 1 to day 3 post infection. The RNA was extracted from liver tissues harvested on day 4 post infection. The expression levels of 84 genes related to mouse endothelial cell biology were determined by qRT-PCR technique. Dengue virus infection upregulated 15 genes and downregulated two genes in the liver of AG129 mice. The FCPLJ treatment upregulated monocyte chemoattractant protein 1 and downregulated intercellular adhesion molecule 1, integrin beta 3 and fibronectin 1 genes during dengue virus infection. The data showed the potential effect of FCPLJ treatment on the expression profile of endothelial cell biology related genes in the liver of dengue virus infected-AG129 mice. Further proteomic studies are needed to determine the functional roles of the genes affected by FCPLJ treatment.

    Matched MeSH terms: Liver/virology
  8. Loh HS, Mohd-Azmi ML, Sheikh-Omar AR, Zamri-Saad M, Tam YJ
    Acta Virol., 2007;51(1):27-33.
    PMID: 17432941
    The present study described the kinetics of Rat cytomegalovirus (RCMV) infection in newborn rats by monitoring infectious virus and viral antigens in various organs, viral DNA in the blood (DNAemia) and antibody response. These parameters were evaluated quantitatively using double-antibody sandwich ELISA (DAS-ELISA), real-time PCR, indirect ELISA and virus infectivity assay. For the first time DAS-ELISA was used for detection of RCMV antigen directly from organ samples. The relationships between the presence of viral antigens in the infected organs and antibody levels were established by the Spearman's rank test. It was found that the virus was present in the blood, spleen, liver, lungs, and kidneys earlier than in the salivary glands. Furthermore, the early immunity of the newborn rats led to a delayed seroconversion. We suggested that the prolonged presence of the virus in salivary glands could augment the antibody response that conversely might be responsible for a reduction of viremia. This study expanded our understanding of RCMV pathogenesis leading to improved therapeutic and preventive treatment regimens particularly for the neonatal Human cytomegalovirus (HCMV) infections. Additionally, the detection procedures developed in this study such as DAS-ELISA and real-time PCR could serve as alternative techniques for rapid screening of large number of samples.
    Matched MeSH terms: Liver/virology
  9. Leong CR, Funami K, Oshiumi H, Mengao D, Takaki H, Matsumoto M, et al.
    Oncotarget, 2016 10 18;7(42):68179-68193.
    PMID: 27626689 DOI: 10.18632/oncotarget.11907
    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy.
    Matched MeSH terms: Liver/virology
  10. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Mohd Lila MA, Noordin MM
    Microb Pathog, 2017 Mar;104:17-27.
    PMID: 28062291 DOI: 10.1016/j.micpath.2017.01.003
    Boid inclusion body disease (BIBD) is a viral disease of boid snakes believed to be caused by reptarenavirus belonging to the family Arenaviridae. Unlike most mammalian arenaviruses, the reservoir host for reptarenavirus is still unknown. In this study, the pathological responses were evaluated in a mouse model for a period of 28 days. Blood and tissue samples (lung, liver, spleen, heart, kidney and brain) were collected for evaluation of hematology, biochemistry, histopathology and oxidative enzyme levels at six time points (1, 3, 7, 14, 21 and 28 days), after viral infection (2.0 × 10(6) pfu/mL) in the infected and normal saline in the control groups. An initial increase (p liver, kidney, spleen, brain and lungs were mainly associated with degeneration, necrosis and infiltration of lymphocytes. Viral counts were low on days 7 and 14 but surged in both the liver and spleen on day 21 and 28. This study has shown that reptarenavirus replicates in mammalian host and induces oxidative stress. Furthermore, the resultant hematobiochemical and histopathological changes observed in infected mice were similar to what has been reported in mammarenavirus infections. This suggests that rodents may serve as potential reservoir hosts for reptarenavirus.
    Matched MeSH terms: Liver/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links