Displaying all 6 publications

Abstract:
Sort:
  1. Candyrine SCL, Mahadzir MF, Garba S, Jahromi MF, Ebrahimi M, Goh YM, et al.
    PLoS One, 2018;13(7):e0199840.
    PMID: 29975711 DOI: 10.1371/journal.pone.0199840
    Twenty male Saanen goats were randomly assigned to four levels of lovastatin supplementation and used to determine the optimal dosage and sustainability of naturally produced lovastatin from fermentation of palm kernel cake (PKC) with Aspergillus terreus on enteric methane (CH4) mitigation. The effects on ruminal microbiota, rumen fermentation, feed digestibility and health of animal were determined over three measuring periods (4-, 8- and 12-weeks) and the accumulation of lovastatin in tissues was determined at the end of the experiment. The diets contained 50% rice straw, 22.8% concentrates and 27.2% of various proportions of untreated or treated PKC to achieve the target daily intake level of 0 (Control), 2, 4 or 6 mg lovastatin/kg body weight (BW). Enteric CH4 emissions per dry matter intake (DMI), decreased significantly (P<0.05) and equivalent to 11% and 20.4%, respectively, for the 2 and 4 mg/kg BW groups as compared to the Control. No further decrease in CH4 emission thereafter with higher lovastatin supplementation. Lovastatin had no effect on feed digestibility and minor effect on rumen microbiota, and specifically did not reduce the populations of total methanogens and Methanobacteriales (responsible for CH4 production). Similarly, lovastatin had little effect on rumen fermentation characteristics except that the proportion of propionate increased, which led to a decreasing trend (P<0.08) in acetic: propionate ratio with increasing dosage of lovastatin. This suggests a shift in rumen fermentation pathway to favor propionate production which serves as H+ sink, partly explaining the observed CH4 reduction. No adverse physiological effects were noted in the animals except that treated PKC (containing lovastatin) was less palatable at the highest inclusion level. Lovastatin residues were detected in tissues of goats fed 6 mg lovastatin/kg BW at between 0.01 to 0.03 μg/g, which are very low.
    Matched MeSH terms: Lovastatin/pharmacology*
  2. Mohd Azlan P, Jahromi MF, Ariff MO, Ebrahimi M, Candyrine SCL, Liang JB
    Trop Anim Health Prod, 2018 Mar;50(3):565-571.
    PMID: 29150805 DOI: 10.1007/s11250-017-1470-x
    The objectives of this study were to test the efficacy of producing lovastatin in rice straw treated with Aspergillus terreus in larger laboratory scale following the procedure previously reported and to investigate the effectiveness of the treated rice straw containing lovastatin on methane mitigation in goats. The concentration of lovastatin in the treated rice straw was 0.69 ± 0.05 g/kg dry matter (DM) rice straw. Our results showed that supplementation of lovastatin at 4.14 mg/kg BW reduced methane production by 32% while improving the DM digestibility by 13% (P lovastatin in the treated rice straw acted specifically on the methanogens by inhibiting the activity of HMG-CoA reductase in the methanogens' cell membrane biosynthesis pathway and thus the growth of rumen methanogens as previously reported. This study provides a simple yet practical approach to mitigate enteric methane production particularly in the developing countries which depend heavily on the use of agro-biomass such as rice straw to feed their ruminant animals.
    Matched MeSH terms: Lovastatin/pharmacology
  3. Abdul-Majeed S, Mohamed N, Soelaiman IN
    Life Sci, 2015 Mar 15;125:42-8.
    PMID: 25534439 DOI: 10.1016/j.lfs.2014.12.012
    Statins are competitive inhibitors of HMGCoA reductase and are commonly used as antihypercholesterolemic agents. Experimental studies clearly demonstrate the beneficial effects of statins on bone. Tocotrienols have also been shown to have anti-osteoporotic effects on the skeletal system. This study was conducted to observe the effect of a combination of delta-tocotrienol and lovastatin on structural bone histomorphometry and bone biomechanical strength in a postmenopausal rat model at clinically tolerable doses, and to compare it with the effect of delta-tocotrienol or lovastatin.
    Matched MeSH terms: Lovastatin/pharmacology
  4. Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P, et al.
    Biomed Res Int, 2013;2013:604721.
    PMID: 23710454 DOI: 10.1155/2013/604721
    Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3 methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.
    Matched MeSH terms: Lovastatin/pharmacology
  5. Garba S, Sazili AQ, Mahadzir MF, Candyrine SCL, Jahromi MF, Ebrahimi M, et al.
    Meat Sci, 2019 Aug;154:61-68.
    PMID: 31004941 DOI: 10.1016/j.meatsci.2019.04.008
    This study investigated the carcass characteristics, physico-chemical properties, storage stability and cholesterol content of meat from goats fed with different levels of naturally-produced lovastatin used to mitigate enteric methane production. Twenty intact Saanen male goats of 5-6 months old with initial live weight of 25.8 ± 4.0 kg were randomly allotted into four dietary treatments containing 0 (Control), 2 (Low), 4 (Medium) and 6 mg (High) per kg live weight (LW) of naturally-produced lovastatin for 12 consecutive weeks. No differences were found in all the parameters measured except for full LW, hot and cold carcass weight, shear force, color and cholesterol content among the treatment groups. Aging had significant effects on all the parameters measured in this study except a* (redness) of meat. Meat samples in the Medium and High treatments were of higher lightness and yellowness, more tender and lower cholesterol levels. We conclude that, in addition to mitigate enteric methane emissions, dietary supplementation of naturally-produced lovastatin at 4 mg/kg LW could be a feasible feeding strategy to produce tender meat containing lower cholesterol.
    Matched MeSH terms: Lovastatin/pharmacology*
  6. Ibrahim N', Mohamed N, Soelaiman IN, Shuid AN
    Int J Environ Res Public Health, 2015 Oct;12(10):12958-76.
    PMID: 26501302 DOI: 10.3390/ijerph121012958
    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II-VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing.
    Matched MeSH terms: Lovastatin/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links