Displaying all 10 publications

Abstract:
Sort:
  1. Jawad MM, Husein A, Alam MK, Hassan R, Shaari R
    Lasers Med Sci, 2014 Jan;29(1):367-72.
    PMID: 22986701 DOI: 10.1007/s10103-012-1199-8
    The need for orthodontic treatment is increasing all the time. As the treatment is time consuming ranging from a year to several years, any method of reducing the period of treatment and increasing the quality of the tissue will be beneficial to patients. The use of non-invasive techniques such as low level laser therapy and low intensity pulsed ultasound in accelerating orthodontic tooth movement are promising. Thus, this overview study will help to generate more understanding about the background information and the possible applications of them in daily orthodontics, depending on previous literature searching for reviews and original research articles.
    Matched MeSH terms: Low-Level Light Therapy/methods*
  2. Jalil MA, Phelawan J, Aziz MS, Saktioto T, Ong CT, Yupapin PP
    Artif Cells Nanomed Biotechnol, 2013 Apr;41(2):92-7.
    PMID: 22991968 DOI: 10.3109/10731199.2012.700519
    Acne vulgaris is adebilitating dermatologic disease, and is conventionally treated by laser therapy using a microring resonator system. An evolving understanding of laser-tissue interactions involving Propioni bacterium acneproducing porphyrins, and the development of lasers to target the sebaceous glands, has led to the development of an escalating number of laser light for acne treatment. The results show that the full width at half maximum of the proposed laser pulse of 0.15 nm can be generated using a microring resonator system. The power of the laser is 200 W and the wavelength laser is 1,032 nm, which is proposed as a treatment of acne vulgaris diseases.
    Matched MeSH terms: Low-Level Light Therapy/methods*
  3. Jalil MA, Ong CT, Saktioto T, Daud S, Aziz MS, Yupapin PP
    Artif Cells Nanomed Biotechnol, 2013 Jun;41(3):152-8.
    PMID: 22947143 DOI: 10.3109/10731199.2012.700520
    A microring resonator (MRRs) system incorporated with a add/drop filter is proposed in which ultra-short single, multi-temporal, and spatial optical soliton pulses are simulated and used to kill abnormal cells, tumors, and cancer. Chaotic signals are generated by a bright soliton pulse within a nonlinear MRRs system. Gold nanoparticles and ultra-short femtosecond/picosecond laser pulses' interaction holds great interest in laser nanomedicine. By using appropriate soliton input power and MRRs parameters, desired spatial and temporal signals can be generated over the spectrum. Results show that short temporal and spatial solitons pulse with FWHM = 712 fs and FWHM = 17.5 pm could be generated. The add/drop filter system is used to generate the high-capacity, ultra-short soliton pulses in the range of nanometer/second and picometer/second.
    Matched MeSH terms: Low-Level Light Therapy/methods
  4. Zwiri A, Alrawashdeh MA, Khan M, Ahmad WMAW, Kassim NK, Ahmed Asif J, et al.
    Pain Res Manag, 2020;2020:5971032.
    PMID: 33005278 DOI: 10.1155/2020/5971032
    Objective: The aim of this systematic review was to evaluate the effectiveness of laser application in temporomandibular joint disorder.

    Methods: PubMed, SCOPUS, Science Direct, Web of Science, and Google Scholar electronic databases were searched systematically with restricting the languages to only English and year (January 2001 to March 2020), and studies were selected based on the inclusion criteria. Study quality and publication bias were assessed by using the Robvis, a software package of R statistical software.

    Results: This systematic review included 32 studies (1172 patients) based on the inclusion and exclusion criteria. Most of the studies reported significant reduction of pain by the use of the laser during TMD treatment. Two-thirds of the study (78.13%) found a better outcome comparing with conventional one. According to Robvis, 84.4% of the studies were high methodological studies with low risk of bias.

    Conclusion: TMD patients suffer with continuous pain for long time even after conventional treatment. Laser therapy shows a promising outcome of pain reduction for TMD patients. Therefore, laser therapy can be recommended for the TMD patients' better outcome. This trial is registered with PROSPERO (CRD42020177562).

    Matched MeSH terms: Low-Level Light Therapy/methods*
  5. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A
    Pain Res Manag, 2021;2021:6690542.
    PMID: 34055122 DOI: 10.1155/2021/6690542
    Objective: To assess the effect of low-level laser applied at 3 weeks intervals on orthodontic tooth movement (OTM) and pain using conventional brackets (CB).

    Materials and Methods: Twenty patients with Angle's class II div 1 (10 males and 10 females; aged 20.25 ± 3.88 years) needing bilateral extractions of maxillary first bicuspids were recruited. Conventional brackets MBT of 0.022 in slot (McLaughlin Bennett Trevisi) prescription braces (Ortho Organizers, Carlsbad, Calif) were bonded. After alignment and levelling phase, cuspid retraction began with nitinol closed coil spring on 19 × 25 stainless steel archwire, wielding 150 gram force. 7.5 J/cm2 energy was applied on 10 points (5 buccal and 5 palatal) on the canine roots on the investigational side using gallium-aluminum-arsenic diode laser (940 nm wavelength, iLase™ Biolase, Irvine, USA) in a continuous mode. Target tissues were irradiated once in three weeks for 9 weeks at a stretch (T0, T1, and T2). Patients were given a feedback form based on the numeric rating scale (NRS) to record the pain intensity for a week. Silicon impressions preceded the coil activation at each visit (T0, T1, T2, and T3), and the casts obtained were scanned with the Planmeca CAD/CAM™ (Helsinki, Finland) scanner.

    Results: The regimen effectively accelerated (1.55 ± 0.25 mm) tooth movement with a significant reduction in distress on the investigational side as compared to the placebo side (94 ± 0.25 mm) (p < 0.05).

    Conclusions: This study reveals that the thrice-weekly LLLT application can accelerate OTM and reduce the associated pain.

    Matched MeSH terms: Low-Level Light Therapy/methods*
  6. Alazzawi MMJ, Husein A, Alam MK, Hassan R, Shaari R, Azlina A, et al.
    Prog Orthod, 2018 Apr 16;19(1):10.
    PMID: 29658096 DOI: 10.1186/s40510-018-0208-2
    BACKGROUND: Quality bone regeneration, which leads to the improvement of bone remodeling, is essential for orthodontic treatment. In order to improve bone regeneration and increase the amount of tooth movement, different techniques have been implemented. The object of this study is to compare the effects of low-level laser therapy (LLLT), low-intensity pulsed ultrasound (LIPUS), and their combination on bone remodeling during orthodontic tooth movement.

    METHODS: Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2.

    RESULTS: The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest.

    CONCLUSION: These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.

    Matched MeSH terms: Low-Level Light Therapy/methods*
  7. Arslan H, Doğanay E, Karataş E, Ünlü MA, Ahmed HMA
    J Endod, 2017 Nov;43(11):1765-1769.
    PMID: 28967495 DOI: 10.1016/j.joen.2017.06.028
    INTRODUCTION: Low-level laser therapy (LLLT) is a practical, nonpharmacologic technique for reducing pain. This study evaluated the effect of LLLT on postoperative pain after root canal retreatment (RCR).

    METHODS: This study enrolled patients (N = 36) who required root canal retreatment (RCR) on mandibular molar teeth, presented with periapical lesions with periapical index scores of 2 or 3, and had a pain visual analog scale (VAS) <50 and a percussion pain VAS <50. The participants were divided into 2 groups: (1) patients scheduled for RCR followed by LLLT (n = 18) and (2) patients scheduled for RCR followed by a mock LLLT (placebo) (n = 18). Postoperative pain was assessed using the VAS. Data were collected and statistically analyzed with the chi-square test, the independent sample t test, and the Mann-Whitney U test (P = .05).

    RESULTS: On the first 4 days, postoperative pain significantly reduced in the LLLT group compared with the placebo group (P  .05). The number of patients who needed analgesics was lower in the LLLT group than in the placebo group (P 

    Matched MeSH terms: Low-Level Light Therapy/methods*
  8. Lau P, Bidin N, Krishnan G, AnaybBaleg SM, Sum MB, Bakhtiar H, et al.
    PMID: 26313856 DOI: 10.1016/j.jphotobiol.2015.08.009
    The photobiostimulation effects of near infrared 808 nm diode laser irradiance on diabetic wound were investigated. 120 rats were induced with diabetes by streptozotocin injection. Full thickness punch wounds of 6mm diameter were created on the dorsal part of the rats. All rats were randomly distributed into four groups; one group served as control group, whereas three groups were stimulated daily with unchanged energy density dose of 5 J/cm(2) with different power density, which were 0.1 W/cm(2), 0.2 W/cm(2) and 0.3 W/cm(2) with different exposure duration of 50s, 25s and 17s, respectively. Ten rats from each group were sacrificed on day 3, 6 and 9, respectively. Skin tissues were removed for histological purpose. The contraction of wound was found optimized after exposure with 0.1 W/cm(2). Based on the histological evidence, laser therapy has shown able to promote wound repair through enhanced epithelialization and collagen fiber synthesis. Generally, irradiated groups were advanced in terms of healing than non-irradiated group.
    Matched MeSH terms: Low-Level Light Therapy/methods*
  9. Lau P, Bidin N, Islam S, Shukri WNBWM, Zakaria N, Musa N, et al.
    Lasers Surg Med, 2017 04;49(4):380-386.
    PMID: 27859389 DOI: 10.1002/lsm.22614
    BACKGROUND AND OBJECTIVE: The aim of this study is to investigate the effect of gold nanoparticles (AuNPs) in photobiomodulation therapy (PBMT) on wound healing process.

    MATERIALS AND METHODS: AuNPs are synthesized by Q-switched Nd:YAG laser ablation technique. Cutaneous wound are induced on 45 Sprague Dawley rats on its dorsal part and then randomly divided into three groups. One group serves as non-treatment group (GC) and another two groups are subjected to AuNPs with and without PBMT. About 808 nm diode laser with output power of 100 mW is used as a light source for PBMT. The treatment was carried out daily with exposure duration of 50 seconds and total fluence of 5 J/cm2 . Wound area is monitored for 9 consecutive days using a digital camera, and histological examination is performed at 3rd, 6th, and 9th day through hematoxylin and eosin stain as well as Masson's trichrome stain.

    RESULTS: The group of rats subjected to AuNPs with PBMT shows significantly accelerated wound closure compared to other groups. Histological results indicate that AuNPs and PBMT group is more effective in stimulating angiogenesis and triggers inflammatory response at early stage.

    CONCLUSION: The application of AuNPs in PBMT has potential to accelerate wound healing due to enhanced epithelialization, collagen deposition and fast vascularization. Lasers Surg. Med. 49:380-386, 2017. © 2016 Wiley Periodicals, Inc.

    Matched MeSH terms: Low-Level Light Therapy/methods*
  10. Qamruddin I, Alam MK, Fida M, Khan AG
    Am J Orthod Dentofacial Orthop, 2016 Jan;149(1):62-6.
    PMID: 26718379 DOI: 10.1016/j.ajodo.2015.06.024
    The aim of this study was to see the effect of a single dose of low-level laser therapy on spontaneous and chewing pain after the placement of elastomeric separators.
    Matched MeSH terms: Low-Level Light Therapy/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links