Urine provides a convenient non-invasive alternative to blood sampling for measurement of certain hormones. Urinary luteinizing hormone (LH) measurements have been used for endocrinology research and anti-doping testing. However, the commercially available LH immunoassays are developed and validated for human blood samples but not urine so that LH assays intended for use with urine samples need thorough validation. Therefore, the present study evaluated the measurement of urinary LH immunoreactivity using previously validated immunofluorometric (IF) and immunochemiluminometric (ICL) LH assays after prolonged frozen storage. LH was measured in serial urine samples following administration of a single injection of one of two doses of recombinant human chorionic hormone (rhCG) with assays run at the end of study (2008) and again after four years of frozen (-20 °C) storage where samples were stored without adding preservatives. The ICL assay showed quantitatively reproducible LH measurements after prolonged -20 °C storage. However, the IF immunoassay gave consistently lower LH levels relative to ICL (2008) with a further proportionate reduction after four years of sample storage (2012). Yet, both the assays displayed similar patterns of the time-course of urine LH measurement both before and after four years of frozen storage. In conclusion, we found that both immunoassays are suitable for urinary LH measurements with ICL assay being more robust for quantitative urinary LH measurement such as for anti-doping purposes, whereas the IF could be applicable for research studies where urine LH levels are compared within-study but not in absolute terms.
The longitudinal relationships of within-individual hormone and anthropometric changes during puberty have not ever been fully described. The objectives of this study were to demonstrate that 3 monthly urine collection was feasible in young adolescents and to utilise liquid chromatography-tandem mass spectrometry assay methods for serum and urine testosterone (T), estradiol (E2) and luteinizing hormone (LH) in adolescents by relating temporal changes in urine and serum hormones over 12 months to standard measures of pubertal development.
The BIOSELF 110 is a hand-held, non-invasive electronic instrument that measures basal body temperature and cycle length, and automatically identifies the fertile and infertile phases of the menstrual cycle with flashing red light and green light signals, respectively. The device was evaluated in 77 cycles from 33 ovulatory women in Kuala Lumpur, Malaysia. Ultrasound monitoring of maximum follicular diameter (MFD) and urinary LH measurements with Ovustick were used as reference methods to estimate the time of ovulation and the fertile period. Based on the MFD day, the BIOSELF correctly identified the entire fertile period, and at least four fertile days, in 89% and 94% of the cycles studied, respectively. The mean duration of the fertile period as determined by the number of flashing red light days was 11.0 days (SD 2.9). The device correctly identified the onset of the postovulatory infertile phase in 94% of cycles, with a mean duration of about 10 (green light) days. The results were similar using the LH peak day as the reference method. The mean interval from the onset of the fertile period (first flashing red light day) to the MFD day was 6.9 days (SD 2.6), and from the MFD day to the end of the fertile period, 3.1 days (SD 2.2). The BIOSELF 110 showed itself to be a reliable device for identifying the fertile and infertile phases of the menstrual cycle and, thus, should be a useful aid for couples seeking pregnancy. Prospective clinical trials are underway to assess the contraceptive effectiveness of the device.