Displaying all 12 publications

Abstract:
Sort:
  1. Lee ES, Kim LH, Abdullah WA, Peh SC
    Pathobiology, 2010;77(2):96-105.
    PMID: 20332669 DOI: 10.1159/000278291
    This study aimed to examine (1) the expression of P16 protein relative to sites of presentation, immunophenotypic subgroups and proliferative indices of tumour cells, and (2) the relationship between p16 gene alterations and P16 protein overexpression in 70 cases of diffuse large B cell lymphoma (DLBCL).
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism*
  2. Peh SC, Gan GG, Lee LK, Eow GI
    Pathol. Int., 2008 Sep;58(9):572-9.
    PMID: 18801072 DOI: 10.1111/j.1440-1827.2008.02273.x
    Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, and it is recognized to constitute a heterogenous group of neoplasms. It can be divided into germinal center B-cell-like (GCB) and non-GCB subgroups. The aim of the present study was to evaluate the utility of immunophenotype subgrouping of DLBCL in a cohort of multi-ethnic Asian patients. A total of 84 reconfirmed de novo DLBCL were immunostained for the expression of CD10, BCL-2, BCL-6 and multiple myeloma-1. Thirty-three (39.3%) had the GCB phenotype, and the remainder (60.7%), the non-GCB phenotype. The results concur with most reports using a similar method of stratification. Forty-five patients had complete demographic and phenotype studies and 42 patients did not have rituximab treatment and had sufficient data for survival rate analysis. Similar to other studies, patients with combined low and low-intermediate International Prognostic Index score had better overall survival (P = 0.006). But patients with GCB phenotype did not have better prognosis, and BCL-2 expression was not associated with better prognosis. The expression of BCL-6 was associated with lower overall survival rate (P = 0.038). No apparent difference in overall and disease-free survival was noted between patients with GCB and non-GCB disease. BCL-6 expression by tumor cells appears to be associated with poorer prognosis.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism*
  3. Eow GI, Kim LH, Peh SC
    Med J Malaysia, 2006 Oct;61(4):416-21.
    PMID: 17243518 MyJurnal
    Diffuse large B-cell lymphoma (DLBCL) is a heterogenous entity. The pattern of CD15, CD30 and Bcl-2 expression is not well documented, especially in local population. We investigated 67 consecutive cases of DLBCL by immunohistochemistry on paraffin-embedded tissue. The male to female ratio was 1.2:1 with median age of 55 years, and more common nodal than extranodal in presentation. Only 3 of 67 cases expressed CD15. In addition, three cases showed weak membrane staining for CD30. Only one of these three cases was noted to have co-expression of CD15 and with occasional tumour cells showing weak CD30 expression. Bcl-2 protein was expressed in 43 of 67 (64%), more frequently in nodal than in extranodal tumours. In conclusion, CD15 and CD30 expressions are infrequent in DLBCL, and co-expression is rare. Bcl-2 protein expression is common in DLBCL.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  4. Tai YC, Tan JA, Peh SC
    Pathol. Int., 2004 Nov;54(11):811-8.
    PMID: 15533223
    p53 gene mutation is not a frequent event in the tumorigenesis of lymphomas and the expression of p53 protein is independent of p53 gene mutations. The present study aimed to investigate mutations in the p53 gene in a series of extranodal B-cell lymphomas, and its association with p53 protein expression. A total of 52 cases were graded histologically into Grade 1, Grade 2 and Grade 3 tumors and p53 protein expression was detected using immunohistochemistry. Mutations in the p53 gene were analyzed using polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and mobility shifts were confirmed by direct sequencing. The tumors comprised 26 (50%) Grade 1, 9 (17%) Grade 2 and 15 (29%) Grade 3. A high proportion of Grade 2 (25%) tumors expressed p53 protein (P = 0.051) and carried p53 gene mutation (33%) (P = 0.218). However, p53 protein expression was not associated with p53 gene mutations (P = 0.057). Transversion mutations (88%) were more frequently detected than transition mutations (12%). The present study revealed that p53 gene mutations and p53 protein expression occurred in higher frequencies in Grade 2 tumors, which may be of pathogenetic importance. The high frequency of transversion mutations may reflect the influence of an etiological agent in the tumorigenesis of mucosa-associated lymphoid tissue (MALT lymphoma).
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  5. Peh SC, Kim LH, Poppema S
    Am. J. Surg. Pathol., 2001 Jul;25(7):925-9.
    PMID: 11420464
    Thymus and activation-regulated chemokine (TARC) has been identified as a lymphocyte-directed CC chemokine that attracts activated T-helper type 2 (Th2) cells in humans. Recent studies showed that the T cells surrounding Reed-Sternberg cells in Hodgkin's lymphomas (HL) are Th2 type. Anaplastic large cell lymphomas (ALCL), T-cell-rich B-cell lymphoma (TCRBCL) can mimic HL in some instances. This study aimed to establish the pattern of TARC expression in these diseases. Immunohistochemical stain using a polyclonal goat anti-human antibody to TARC was performed on 119 cases of confirmed HL; 99 were classical type (43 mixed cellularity, 43 nodular sclerosis, 5 lymphocyte depleted, 4 lymphocyte rich, 4 unclassifiable) and 20 lymphocyte predominant HL. Additional 27 ALCL (9 T-, 18 null-cell phenotype), 16 T-cell and 8 B-cell non-Hodgkin's lymphoma (NHL) were studied. A total of 85.8% of the classical HL, one case of ALCL, and one case of large cell B-cell lymphoma with anaplastic morphology showed positive TARC expression in the tumor cells. The expression was paranuclear and/or diffuse in the cell cytoplasm. The tumor cells in all cases of lymphocyte predominant HL, TCRBCL, null ALCL, and T-NHL did not express TARC. The high frequency of TARC expression in the Reed-Sternberg cells of classical HL may explain the characteristic T-cell infiltrate in this disease. The absence in other types that may be morphologically similar indicates that staining for TARC may aid in differential diagnosis.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism*
  6. Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, et al.
    Pathology, 2017 Dec;49(7):731-739.
    PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009
    DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  7. Wong KK, Prepageran N, Peh SC
    Pathology, 2009 Feb;41(2):133-9.
    PMID: 18972319 DOI: 10.1080/00313020802436790
    AIMS: To stratify upper aerodigestive tract (UAT) diffuse large B-cell lymphoma (DLBCL) into prognostic subgroups by immunohistochemical staining (IHC) method, and to evaluate the association rate of UAT DLBCL with Epstein-Barr virus (EBV).

    METHODS: Using a panel of antibodies to CD10, Bcl-6, MUM1 and CD138, consecutive cases of primary UAT DLBCL were stratified into subgroups of germinal centre B-cell-like (GCB) and non-GCB, phenotype profile patterns A, B and C, as proposed by Hans et al. and Chang et al., respectively. EBER in situ hybridisation technique was applied for the detection of EBV in the tumours.

    RESULTS: In this series of 32 cases of UAT DLBCL, 34% (11/32) were GCB, and 66% (21/32) were non-GCB types; 59% (19/32) had combined patterns A and B, and 41% (13/32) had pattern C. Statistical analysis revealed no significant difference in the occurrence of these prognostic subgroups in the UAT when compared with series of de novo DLBCL from all sites. There was also no site difference in phenotype protein expressions, with the exception of MUM1. EBER in situ hybridisation stain demonstrated only one EBV infected case.

    CONCLUSIONS: Prognostic subgroup distribution of UAT DLBCL is similar to de novo DLBCL from all sites, and EBV association is very infrequent.

    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  8. Tai YC, Kim LH, Peh SC
    Pathology, 2003 Oct;35(5):436-43.
    PMID: 14555389
    AIMS: The most common recurrent genetic aberration in anaplastic large cell lymphoma (ALCL) is translocation involving the ALK gene that results in ectopic expression of ALK protein in lymphoid tissue. This study aims to investigate the frequency of ALK gene rearrangement in a series of Asian ALCL.

    METHODS: ALK gene rearrangement was detected by immunostaining of ALK protein and fluorescence in situ hybridisation (FISH) targeting at the 2p23 region.

    RESULTS: The expression of ALK protein was detected in 24/34 (71%) of the cases, and it was significantly higher in childhood cases (100%) when compared to adult cases (47%). The analyses by FISH were consistent with the results from immunostaining of ALK protein, but the analyses were only successful in 15/34 (44%) cases. FISH analyses detected extra copies of ALK gene in three cases, including one case that expressed ALK protein and showed 2p23 rearrangement.

    CONCLUSIONS: The current series revealed a high frequency of ALK gene rearrangement, especially in the children. Immunostaining of ALK protein is a reliable indication of ALK gene rearrangement, and is superior to FISH. However, FISH analysis is useful in detecting other genetic aberrations that are not related to ALK gene rearrangement.

    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  9. Masir N, Jones M, Lee AM, Goff LK, Clear AJ, Lister A, et al.
    Histopathology, 2010 Apr;56(5):617-26.
    PMID: 20459572 DOI: 10.1111/j.1365-2559.2010.03524.x
    To investigate the relationship between Bcl-2 protein expression and cell proliferation at single-cell level in B-cell lymphomas using double-labelling techniques.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  10. Teoh CS, Lee SY, Chiang SK, Chew TK, Goh AS
    Asian Pac J Cancer Prev, 2018 May 26;19(5):1229-1236.
    PMID: 29801406
    Background: Diffuse large B-cell lymphoma (DLBCL) with double expression of c-MYC and BCL2 protein is
    associated with dismal outcome after treatment with R-CHOP. Local data on disease burden and survival outcome in
    DLBCL is limited. We investigated the prognostic values of c-MYC/BCL2 protein co-expression and cell of origin
    subtypes using immunohistochemistry (IHC) and to determine their associations with multiethnic groups under
    resource limited setting. Methods: This was a retrospective study which recruited 104 patients in between June 2012
    and December 2015 for IHC review and analysis. Result: We demonstrated that patients with high International
    Prognostic Index (IPI) (score 3-5) and co-expression of c-MYC/BCL2 protein had significant inferior overall survival
    (OS) and event free survival (EFS) respectively (P<0.05). c-MYC/BCL2 protein co-expression was more common in
    non-germinal center B-cell (non-GCB) (P=0.048) and contributed to adverse prognosis in this group of patients (OS,
    P=0.004; EFS, P=0.005). In multivariate analysis, double-protein co-expression was a significant independent predictor
    of inferior outcome after adjusted for IPI and cell of origin subtypes (OS hazard ratio [HR], 2.11; 95% CI, 1.01 to 4.04;
    P=0.048; EFS HR, 2.31; 95% CI, 1.05 to 5.04; P=0.036). In addition, non-GCB subtype was more common than GCB
    in Malays (60% vs 40%, P=0.106) and Chinese (81.2% vs 18.8%, P=0.042). Indians had more DLBCL without c-MYC/
    BCL2 protein co-expression compared to double-protein positive cases (66.7% vs 33.3%, P=0.414). Otherwise, the
    prognostic impact of ethnicity on survival outcome was insignificant (P=0.961). Conclusion: c-MYC/BCL2 protein
    co-expression in non-GCB subtype constituted a unique group with extremely inferior outcome regardless of ethnicity.
    Gene expression profile (GEP) may possibly provide insights into the cause of discrepancies in DLBCL subtypes and
    protein expression among the multiethnic groups.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
  11. Vockerodt M, Vrzalikova K, Ibrahim M, Nagy E, Margielewska S, Hollows R, et al.
    J Pathol, 2019 06;248(2):142-154.
    PMID: 30666658 DOI: 10.1002/path.5237
    The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism*
  12. Wong KK, Gascoyne DM, Soilleux EJ, Lyne L, Spearman H, Roncador G, et al.
    Oncotarget, 2016 Aug 16;7(33):52940-52956.
    PMID: 27224915 DOI: 10.18632/oncotarget.9507
    FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor prognosis activated B-cell (ABC)-like subtype display partially blocked plasma cell differentiation. FOXP2 protein expression was detected in ABC-DLBCL cell lines, and in primary DLBCL samples tumoral FOXP2 protein expression was detected in both germinal center B-cell-like (GCB) and non-GCB DLBCL. In biopsies from DLBCL patients treated with immunochemotherapy (R-CHOP), ≥ 20% nuclear tumoral FOXP2-positivity (n = 24/158) correlated with significantly inferior overall survival (OS: P = 0.0017) and progression-free survival (PFS: P = 0.0096). This remained significant in multivariate analysis against either the international prognostic index score or the non-GCB DLBCL phenotype (P < 0.05 for both OS and PFS). Expression of BLIMP1, a marker of plasmacytic differentiation that is commonly inactivated in ABC-DLBCL, did not correlate with patient outcome or FOXP2 expression in this series. Increased frequency of FOXP2 expression significantly correlated with FOXP1-positivity (P = 0.0187), and FOXP1 co-immunoprecipitated FOXP2 from ABC-DLBCL cells indicating that these proteins can co-localize in a multi-protein complex. FOXP2-positive DLBCL had reduced expression of HIP1R (P = 0.0348), which is directly repressed by FOXP1, and exhibited distinct patterns of gene expression. Specifically in ABC-DLBCL these were associated with lower expression of immune response and T-cell receptor signaling pathways. Further studies are warranted to investigate the potential functional cooperativity between FOXP1 and FOXP2 in repressing immune responses during the pathogenesis of high-risk DLBCL.
    Matched MeSH terms: Lymphoma, Large B-Cell, Diffuse/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links