Displaying all 11 publications

Abstract:
Sort:
  1. Glanville KP, Coleman JRI, Hanscombe KB, Euesden J, Choi SW, Purves KL, et al.
    Biol Psychiatry, 2020 Mar 01;87(5):419-430.
    PMID: 31570195 DOI: 10.1016/j.biopsych.2019.06.031
    BACKGROUND: The prevalence of depression is higher in individuals with autoimmune diseases, but the mechanisms underlying the observed comorbidities are unknown. Shared genetic etiology is a plausible explanation for the overlap, and in this study we tested whether genetic variation in the major histocompatibility complex (MHC), which is associated with risk for autoimmune diseases, is also associated with risk for depression.

    METHODS: We fine-mapped the classical MHC (chr6: 29.6-33.1 Mb), imputing 216 human leukocyte antigen (HLA) alleles and 4 complement component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium Major Depressive Disorder Working Group and the UK Biobank. The total sample size was 45,149 depression cases and 86,698 controls. We tested for association between depression status and imputed MHC variants, applying both a region-wide significance threshold (3.9 × 10-6) and a candidate threshold (1.6 × 10-4).

    RESULTS: No HLA alleles or C4 haplotypes were associated with depression at the region-wide threshold. HLA-B*08:01 was associated with modest protection for depression at the candidate threshold for testing in HLA genes in the meta-analysis (odds ratio = 0.98, 95% confidence interval = 0.97-0.99).

    CONCLUSIONS: We found no evidence that an increased risk for depression was conferred by HLA alleles, which play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly associated with schizophrenia. These results suggest that any HLA or C4 variants associated with depression either are rare or have very modest effect sizes.

    Matched MeSH terms: Major Histocompatibility Complex
  2. Sin YW, Newman C, Dugdale HL, Buesching C, Mannarelli ME, Annavi G, et al.
    PLoS One, 2016;11(10):e0163773.
    PMID: 27695089 DOI: 10.1371/journal.pone.0163773
    The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual's leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.
    Matched MeSH terms: Major Histocompatibility Complex/genetics; Major Histocompatibility Complex/immunology
  3. Chai HC, Phipps ME, Chua KH
    Clin. Dev. Immunol., 2012;2012:963730.
    PMID: 21941582 DOI: 10.1155/2012/963730
    SLE is an autoimmune disease that is not uncommon in Malaysia. In contrast to Malays and Indians, the Chinese seem to be most affected. SLE is characterized by deficiency of body's immune response that leads to production of autoantibodies and failure of immune complex clearance. This minireview attempts to summarize the association of several candidate genes with risk for SLE in the Malaysian population and discuss the genetic heterogeneity that exists locally in Asians and in comparison with SLE in Caucasians. Several groups of researchers have been actively investigating genes that are associated with SLE susceptibility in the Malaysian population by screening possible reported candidate genes across the SLE patients and healthy controls. These candidate genes include MHC genes and genes encoding complement components, TNF, FcγR, T-cell receptors, and interleukins. However, most of the polymorphisms investigated in these genes did not show significant associations with susceptibility to SLE in the Malaysian scenario, except for those occurring in MHC genes and genes coding for TNF-α, IL-1β, IL-1RN, and IL-6.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  4. Meng W, Zhu Z, Jiang X, Too CL, Uebe S, Jagodic M, et al.
    Arthritis Res Ther, 2017 03 29;19(1):71.
    PMID: 28356135 DOI: 10.1186/s13075-017-1276-2
    BACKGROUND: Multiple factors, including interactions between genetic and environmental risks, are important in susceptibility to rheumatoid arthritis (RA). However, the underlying mechanism is not fully understood. This study was undertaken to evaluate whether DNA methylation can mediate the interaction between genotype and smoking in the development of anti-citrullinated peptide antibody (ACPA)-positive RA.

    METHODS: We investigated the gene-smoking interactions in DNA methylation using 393 individuals from the Epidemiological Investigation of Rheumatoid Arthritis (EIRA). The interaction between rs6933349 and smoking in the risk of developing ACPA-positive RA was further evaluated in a larger portion of the EIRA (1119 controls and 944 ACPA-positive patients with RA), and in the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA) (1556 controls and 792 ACPA-positive patients with RA). Finally, mediation analysis was performed to investigate whether DNA methylation of cg21325723 mediates this gene-environment interaction on the risk of developing of ACPA-positive RA.

    RESULTS: We identified and replicated one significant gene-environment interaction between rs6933349 and smoking in DNA methylation of cg21325723. This gene-smoking interaction is a novel interaction in the risk of developing ACPA-positive in both Caucasian (multiplicative P value = 0.056; additive P value = 0.016) and Asian populations (multiplicative P value = 0.035; additive P value = 0.00027), and it is mediated through DNA methylation of cg21325723.

    CONCLUSIONS: We showed that DNA methylation of cg21325723 can mediate the gene-environment interaction between rs6933349 and smoking, impacting the risk of developing ACPA-positive RA, thus being a potential regulator that integrates both internal genetic and external environmental risk factors.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  5. Mahzabin T, Pillow JJ, Pinniger GJ, Bakker AJ, Noble PB, White RB, et al.
    Pediatr Res, 2017 Sep;82(3):509-517.
    PMID: 28388600 DOI: 10.1038/pr.2017.99
    BackgroundPregnant women at a high risk of preterm delivery receive glucocorticoids to accelerate fetal lung maturation and surfactant synthesis. However, the effect of antenatal steroids on the developing diaphragm remains unclear. We hypothesized that maternal betamethasone impairs the fetal diaphragm, and the magnitude of the detrimental effect increases with longer duration of exposure. We aimed to determine how different durations of fetal exposure to maternal betamethasone treatment influence the fetal diaphragm at the functional and molecular levels.MethodsDate-mated merino ewes received intramuscular injections of saline (control) or two doses of betamethasone (5.7 mg) at an interval of 24 h commencing either 2 or 14 days before delivery. Preterm lambs were killed after cesarean delivery at 121-day gestational age. In vitro contractile measurements were performed on the right hemidiaphragm, whereas molecular/cellular analyses used the left costal diaphragm.ResultsDifferent durations of fetal exposure to maternal betamethasone had no consistent effect on the protein metabolic pathway, expression of glucocorticoid receptor and its target genes, cellular oxidative status, or contractile properties of the fetal lamb diaphragm.ConclusionThese data suggest that the potential benefits of betamethasone exposure on preterm respiratory function are not compromised by impaired diaphragm function after low-dose maternal intramuscular glucocorticoid exposure.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  6. Othman S, Rahman NA, Yusof R
    Trans R Soc Trop Med Hyg, 2010 Dec;104(12):806-8.
    PMID: 20800252 DOI: 10.1016/j.trstmh.2010.07.004
    In contrast to many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) class I pathway, flaviviruses have been shown to up-regulate the cell surface expression of MHC class I complex. The mechanism by which dengue virus (DV) achieves this up-regulation remains unclear. Our investigation on the HLA-A2 gene in human liver cells demonstrated that all four serotypes of dengue virus, DV1 to DV4, resulted in variable degrees of promoter induction. This illustrates the importance of MHC class I transcription regulation in primary infections by different DV serotypes that may have even greater impact in secondary infections, associated with increased disease severity.
    Matched MeSH terms: Major Histocompatibility Complex
  7. Vivek Prasad, Lam Yan Shim, Sethu Thakachy Subha, Fazlina Nordin, Maha Abdullah
    MyJurnal
    Introduction: Human leukocyte antigens (HLA) are a group of unique transmembrane glycoproteins that are ex-pressed on the surface of virtually all types of cells within the human body. These molecules are encoded by a set of highly polymorphic gene sequences known also as the major histocompatibility complex (MHC) and play an essential role in the presentation of antigenic peptides to immune cells for recognition and response. In recent years, various HLA alleles have been found to be associated with different autoimmune and inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE) and allergic rhinitis. Identification of these alleles via HLA typing is necessary for initial screening and diagnosis purposes. Besides that, HLA typing is also used to determine compatibility matching between a donor and a recipient for tissue/organ transplantations in order to prevent graft rejection. Therefore, good quality and quantity of genomic DNA is required. In most scenarios, peripheral blood is chosen as the most reliable source of DNA for analysis, however this approach is seen as invasive and may cause pain and anxiety among the patients, particularly young children and weak subjects. Hence, derivation of genomic DNA from buccal cells as an alternative source material is becoming increasingly popular, especially in PCR-based genetic assays. Some of the most commonly described methods to collect buccal cells include using oral swabs, cytological brushes, mouthwashes and treated cards. Each technique yields varying quantities of DNA with diverse purity levels. In this study, we aim to evaluate the amount and purity of genomic DNA extracted from buccal swabs and brushes as well as blood for screening of selected HLA class II alleles. Methods: Cheek cell samples were col-lected using sterile foam tipped buccal swabs (Whatman) and buccal collection brushes (Gentra Puregene) whereas peripheral blood samples were withdrawn following routine venipuncture techniques. All samples were subjected to DNA extraction according to modified commercial kit protocols. Screening of selected HLA-DRB1 alleles was con-ducted via PCR with sequence-specific primers as established by Bunce et al. 1995. Results: There was no significant difference (p > 0.05) in the total DNA yield obtained from blood and buccal swab samples, which were 17.57μg (± 8.66) and 13.28μg (± 4.81), respectively. All samples exhibited similar 260/280 ratios of about ~1.80 (p > 0.05). However, buccal brush samples contributed the least amount of DNA (0.29μg, ± 0.12) compared to other sources (p < 0.05). The pure genomic DNA isolated from both blood and buccal swab samples were successfully typed for low resolution HLA-DRB1 alleles. Conclusion: Buccal swabs provide good quantity and quality of DNA for screening of HLA alleles with high accuracy and thus can be utilized as a non-invasive substitute for venipuncture.
    Matched MeSH terms: Major Histocompatibility Complex
  8. Munisvaradass R, Ding SSL, Ee AHK, Syahril Abdullah, Mok PL, Kumar S, et al.
    Sains Malaysiana, 2017;46:1831-1838.
    Breast cancer is one of the most common malignancies among woman. Decades of scientific study have linked the
    overexpression of ERBB2 antigen to aggressive tumors. To target aggressive breast cancer, chimeric antigen receptor
    (CAR) technology can be utilized. For this, human T-cells are transduced with a gene sequence encoding a CAR that is
    specific for tumor-associated antigens (TAAs). These genetically-engineered CAR transduced T-cells (CAR-T cells) are
    able to target the tumor antigen without the need for major histocompatibility complex (MHC) recognition, rendering
    it a potentially universal immunotherapeutic option. However, efficient transduction of therapeutic gene into human
    T-cells and further cell expansion are challenging. In this study, we reported a successful optimization of a transduction
    protocol using spinoculation on CD3+ T-cells with different concentrations of lentiviral plasmid encoding the CAR gene.
    CD3+T-cells were isolated from the peripheral blood mononuclear cells (PBMCs). The constructed CAR gene was inserted
    into a lentiviral plasmid containing the green fluorescent protein (GFP) tag and lentiviral particles were produced. These
    lentiviral particles were used to transduce activated T-cells by spinoculation. T-cells were activated using Dynabeadconjugated
    CD3/CD28 human T-cell activator and interleukin-2 (IL-2) before transduction. CD3+ T-cells were selected
    and GFP expression, which indicated transduction, was observed. Future studies will focus on in vitro and in vivo models
    to determine the efficiency of CAR-T cells in specifically targeting ERBB2-expressing cells.
    Matched MeSH terms: Major Histocompatibility Complex
  9. Yasmin AR, Yeap SK, Tan SW, Hair-Bejo M, Fakurazi S, Kaiser P, et al.
    Avian Pathol, 2015;44(6):452-62.
    PMID: 26305169 DOI: 10.1080/03079457.2015.1084997
    Infectious bursal disease is caused by infectious bursal disease virus (IBDV), an immunosuppressive virus that targets immune cells such as B cells and macrophages. However, the involvement of dendritic cells (DCs) during IBDV infection is not well understood. In this study the in vitro effects of live and inactivated very virulent IBDV (vvIBDV) UPM0081 on bone marrow-derived DCs (BM-DC) were characterized and compared with BM-DC treated with lipopolysaccharide (LPS). Morphologically, BM-DC treated with LPS and vvIBDV showed stellate shape when compared to immature BM-DC. In addition, LPS-treated and both live and inactivated vvIBDV-infected BM-DC expressed high levels of double positive CD86 and major histocompatibility complex class II antigens (>20%). vvIBDV-infected BM-DC showed significantly higher numbers of apoptotic cells compared to LPS. Replication of vvIBDV was detected in the infected BM-DC as evidenced by the increased expression of VP3 and VP4 IBDV antigens based on flow cytometry, real-time polymerase chain reaction and immunofluorescence tests. Levels of different immune-related genes such as interleukin-1β (IL-1β), CXCLi2 (IL-8), IL-18, interferon gamma (IFN-γ, IL-12α, CCR7 and Toll-like receptor-3 (TLR3) were measured after LPS and vvIBDV treatments. However, marked differences were noticed in the onset and intensity of the gene expression between these two treatment groups. LPS was far more potent than live and inactivated vvIBDV in inducing the expression of IL-1β, IL-18 and CCR7 while expression of Th1-like cytokines, IFN-γ and IL-12α were significantly increased in the live vvIBDV treatment group. Meanwhile, the expression of TLR3 was increased in live vvIBDV-infected BM-DC as compared to control. Inactivated vvIBDV-treated BM-DC failed to stimulate IFN-γ, IL-12α and TLR3 expressions. This study suggested that BM-DC may serve as another target cells during IBDV infection which require further confirmation via in vivo studies.
    Matched MeSH terms: Major Histocompatibility Complex
  10. Mohamad A, Zamri-Saad M, Amal MNA, Al-Saari N, Monir MS, Chin YK, et al.
    Vaccines (Basel), 2021 Apr 10;9(4).
    PMID: 33920311 DOI: 10.3390/vaccines9040368
    Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly.
    Matched MeSH terms: Major Histocompatibility Complex
  11. Coste C, Gérard N, Dinh CP, Bruguière A, Rouger C, Leong ST, et al.
    Biomolecules, 2020 09 02;10(9).
    PMID: 32887413 DOI: 10.3390/biom10091266
    Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.
    Matched MeSH terms: Major Histocompatibility Complex/drug effects; Major Histocompatibility Complex/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links