Displaying all 7 publications

Abstract:
Sort:
  1. Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731323 DOI: 10.3390/molecules25153403
    Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
    Matched MeSH terms: Melanoma, Experimental/drug therapy; Melanoma, Experimental/metabolism*; Melanoma, Experimental/pathology
  2. Kaneda T, Matsumoto M, Sotozono Y, Fukami S, Nugroho AE, Hirasawa Y, et al.
    J Nat Med, 2019 Jan;73(1):47-58.
    PMID: 30084054 DOI: 10.1007/s11418-018-1233-7
    We recently reported that (23R, 24E)-23-acetoxymangiferonic acid (23R-AMA), a cycloartane triterpenoid isolated by activity-guided separation from a methanol extract of Garcinia sp. bark, inhibited melanin production via inhibition of tyrosinase (TYR) expression in the B16-F10 melanoma cell line. Since 23R-AMA also inhibited microphthalmia-associated transcription factor (MITF) expression, an upstream factor of TYR, these features of 23R-AMA were thought to be appropriate for development of whitening cosmetics. However, 23R-AMA exhibited growth inhibition other than inhibition of melanin production in B16-F10 cells. Therefore, we investigated biological activities of 23R-AMA in detail, focused on its application as an anti-melanoma compound. In this study, we demonstrated that 23R-AMA inhibited cell proliferation and basic FGF (bFGF)-induced migration in B16-F10 cells. Furthermore, 23R-AMA promoted ser45/thr41 phosphorylation of β-catenin and suppressed its intranuclear accumulation, which was suggested to be related to inhibition of MITF expression. The transcriptional activity of MITF is known to be regulated by phosphorylation via activated ERK. Further investigation revealed that 23R-AMA inhibited phosphorylation of c-Raf, MEK-1, and ERK, and also that of upstream molecules including FAK and c-Src. These results suggested that 23R-AMA inhibited growth and migration of B16-F10 melanoma by regulating both MITF expression and its activity. The activities of 23R-AMA reported in this study are new aspects of cycloartane triterpenoids.
    Matched MeSH terms: Melanoma, Experimental/drug therapy*
  3. Lajis AF, Hamid M, Ariff AB
    J Biomed Biotechnol, 2012;2012:952452.
    PMID: 23091364 DOI: 10.1155/2012/952452
    The depigmenting effect of kojic acid esters synthesized by the esterification of kojic acid using Rhizomucor miehei immobilized lipase was investigated in B16F1 melanoma cells. The depigmenting effect of kojic acid and kojic acid esters was evaluated by the inhibitory effect of melanin formation and tyrosinase activity on alpha-stimulating hormone- (α-MSH-) induced melanin synthesis in B16F1 melanoma cells. The cellular tyrosinase inhibitory effect of kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate was found similar to kojic acid at nontoxic doses ranging from 1.95 to 62.5 μg/mL. However, kojic acid monopalmitate gave slightly higher inhibition to melanin formation compared to other inhibitors at doses ranging from 15.63 to 62.5 μg/mL. Kojic acid and kojic acid esters also show antioxidant activity that will enhance the depigmenting effect. The cytotoxicity of kojic acid esters in B16F1 melanoma cells was significantly lower than kojic acid at high doses, ranging from 125 and 500 μg/mL. Since kojic acid esters have lower cytotoxic effect than kojic acid, it is suggested that kojic acid esters can be used as alternatives for a safe skin whitening agent and potential depigmenting agents to treat hyperpigmentation.
    Matched MeSH terms: Melanoma, Experimental/metabolism*
  4. Santhanam RK, Ahmad S, Abas F, Safinar Ismail I, Rukayadi Y, Tayyab Akhtar M, et al.
    Molecules, 2016 May 24;21(6).
    PMID: 27231889 DOI: 10.3390/molecules21060652
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
    Matched MeSH terms: Melanoma, Experimental/drug therapy*; Melanoma, Experimental/pathology
  5. Iijima C, Wong CP, Nugroho AE, Sotozono Y, Someya S, Hirasawa Y, et al.
    J Nat Med, 2016 Oct;70(4):702-7.
    PMID: 27357963 DOI: 10.1007/s11418-016-1016-y
    The ceramicines, a series of limonoids from Chisocheton ceramicus (Meliaceae), were evaluated for anti-melanin deposition activity on α-melanocyte stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-treated B16-F10 melanoma cell, and several ceramicines were found to be active. The structure-activity relationship of ceramicines as anti-melanin deposition inhibitors was deduced. Furthermore, the mechanism of anti-melanin deposition activity of ceramicine B, a major constituent of C. ceramicus that showed potent anti-melanin deposition activity, was investigated. Tyrosinase enzymatic activity and tyrosinase mRNA expression were not affected by ceramicine B. The anti-melanin deposition activity of ceramicine B was shown to be related to the downregulation of tyrosinase protein expression. These results suggest that ceramicines have potential to be used as depigmentation agents.
    Matched MeSH terms: Melanoma, Experimental/metabolism*
  6. Chan YY, Kim KH, Cheah SH
    J Ethnopharmacol, 2011 Oct 11;137(3):1183-8.
    PMID: 21810462 DOI: 10.1016/j.jep.2011.07.050
    ETHNOPHARMACOLOGICAL RELEVANCE: Sargassum polycystum, a type of brown seaweed, has been used for the treatment of skin-related disorders in traditional medicine.

    AIM OF THE STUDY: The aim of the present study is to investigate the antimelanogenesis effect of Sargassum polycystum extracts by cell-free mushroom tyrosinase assay followed by cell viability assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells.

    MATERIALS AND METHODS: Sargassum polycystum was extracted with 95% ethanol and further fractionated with hexane, ethyl acetate and water. The ethanolic crude extract and its fractionated extracts were tested for their potential to act as antimelanogenesis or skin-whitening agents by their abilities to inhibit tyrosinase activity in the cell-free mushroom tyrosinase assay and cellular tyrosinase derived from melanin-forming B16F10 murine melanoma cells. The tyrosinase inhibitory activity was correlated to the inhibition of melanin production in α-MSH-stimulated and unstimulated B16F10 cells.

    RESULTS: Sargassum polycystum ethanolic extract and its fractions had little or no inhibitory effect on mushroom tyrosinase activity. However, when tested on cellular tyrosinase, the ethanolic extract and its non-polar fraction, hexane fraction (SPHF), showed significant inhibition of cellular tyrosinase activity. In parallel to its cellular tyrosinase inhibitory activity, SPHF was also able to inhibit basal and α-MSH-stimulated melanin production in B16F10 cells.

    CONCLUSIONS: Our findings showed that (i) cellular tyrosinase assay is more reliable than mushroom tyrosinase assay in the initial testing of potential antimelanogenesis agents and, (ii) SPHF inhibited melanogenesis by inhibiting cellular tyrosinase activity. SPHF may be useful for treating hyperpigmentation and as a skin-whitening agent in cosmetics industry.

    Matched MeSH terms: Melanoma, Experimental/enzymology*; Melanoma, Experimental/pathology
  7. Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS
    Arch. Dermatol. Res., 2011 Apr;303(3):161-70.
    PMID: 20981431 DOI: 10.1007/s00403-010-1089-5
    Ficus deltoidea (Mas cotek) water extract has been widely used for woman health in Malaysia. Our investigation focused to identify anti-melanogenic efficacy of F. deltoidea since it has been known to have strong anti-oxidant activities. Anti-melanogenic effect of F. deltoidea extract was analyzed using cultured B16F1 melanoma cells. Cytotoxicity of the extract was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and determined the highest concentration of the extract that did not affect cell viability as 0.1% (w/v). α-MSH-induced melanin synthesis was significantly inhibited with dose-dependent manner by treatment of F. deltoidea leave extract, which was comparable to that of kojic acid. The extract directly inhibited mushroom tyrosinase activity and intracellular tyrosinase activity of B16F1 as well. The inhibition of intracellular tyrosinase activity was found to be exerted at the protein expression level when analyzed by immunoblot and tyrosinase zymography. The expression of microphthalmia-associated transcription factor (MITF) was also reduced by the F. deltoidea extract. In conclusion, F. deltoidea extract has strong anti-melanogenic activity that is exerted by direct inhibition of tyrosinase enzyme activity and by down-regulation of the expression of genes involved in the melanogenesis pathways. Collectively, data shown in this study strongly suggest that F. deltoidea extract has potential to be used as a novel depigmenting agent for cosmetics.
    Matched MeSH terms: Melanoma, Experimental
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links