Displaying all 6 publications

Abstract:
Sort:
  1. V-Ghaffari B, Kouhnavard M, Elbasiouny SM
    PLoS One, 2017;12(6):e0178244.
    PMID: 28591171 DOI: 10.1371/journal.pone.0178244
    Subthreshold oscillations in combination with large-amplitude oscillations generate mixed-mode oscillations (MMOs), which mediate various spatial and temporal cognition and memory processes and behavioral motor tasks. Although many studies have shown that canard theory is a reliable method to investigate the properties underlying the MMOs phenomena, the relationship between the results obtained by applying canard theory and conductance-based models of neurons and their electrophysiological mechanisms are still not well understood. The goal of this study was to apply canard theory to the conductance-based model of pyramidal neurons in layer V of the Entorhinal Cortex to investigate the properties of MMOs under antiepileptic drug conditions (i.e., when persistent sodium current is inhibited). We investigated not only the mathematical properties of MMOs in these neurons, but also the electrophysiological mechanisms that shape spike clustering. Our results show that pyramidal neurons can display two types of MMOs and the magnitude of the slow potassium current determines whether MMOs of type I or type II would emerge. Our results also indicate that slow potassium currents with large time constant have significant impact on generating the MMOs, as opposed to fast inward currents. Our results provide complete characterization of the subthreshold activities in MMOs in pyramidal neurons and provide explanation to experimental studies that showed MMOs of type I or type II in pyramidal neurons under antiepileptic drug conditions.
    Matched MeSH terms: Membrane Potentials/drug effects*
  2. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D
    Toxicol In Vitro, 2003 Aug;17(4):433-9.
    PMID: 12849726
    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
    Matched MeSH terms: Membrane Potentials/drug effects
  3. Tay YL, Amanah A, Adenan MI, Wahab HA, Tan ML
    Sci Rep, 2019 12 24;9(1):19757.
    PMID: 31874991 DOI: 10.1038/s41598-019-56106-6
    Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.
    Matched MeSH terms: Membrane Potentials/drug effects*
  4. Tay YL, Teah YF, Chong YM, Jamil MFA, Kollert S, Adenan MI, et al.
    Toxicol Appl Pharmacol, 2016 08 15;305:22-39.
    PMID: 27260674 DOI: 10.1016/j.taap.2016.05.022
    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, IK1, a Kir current mediated by Kir2.1 channel and IKACh, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC50 value of 1.62μM and 1.15μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit IKACh current with an IC50 value of 3.32μM but has no significant effects on IK1. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks.
    Matched MeSH terms: Membrane Potentials/drug effects
  5. Kim Kah Hwi, Wong Bee Lay
    J Ethnopharmacol, 1998 Sep;62(2):137-48.
    PMID: 9741886
    Pharmacological studies showed that Limacia scanden Lour. extracts have sympathomimetic activities similar to noradrenaline (NA). A crude extract of Limacia scanden injected intravenously as a single bolus induced a dose-dependent increase in arterial blood pressure in anaesthetized rats and cats. Pretreatment with a non-specific alpha blocker phentolamine (10(-5) M) blocked this effect, whereas the beta blocker propanolol (10(-5) M) did not. The extract also reduced intestinal motility and this response could be blocked by pretreatment with phentolamine (10(-5) M) and specific alpha1-blocker, prazosin (10(-5) M). In superfused rabbit aorta preparations, it induced an increase in contractions. This effect was blocked by pretreatment with prazosin (10(-5) M), whereas the alpha2-blocker yohimbine (10(-5) M) had only a slight effect. The effects of NA on superfused aorta strip contraction were similar to extract. Toxic symptoms were manifested in less than 5 min when the mice were given 465 mg/kg of extract intraperitoneally. Physiological and behavioural changes observed in dying mice implicated serious malfunctioning of the autonomic nervous system and motor activity. Electrophysiological studies on the tonically autoactive neuron (TAN) of the snail Achantina fulica Férussac revealed that crude extract of Limacia scanden induced excitatory responses which were similar to those of serotonin (5-HT) stimulation. Studies with different ionic compositions of the bathing saline revealed that this excitatory effect of Limacia scanden could be attributed either to release of endogenous serotonin or inhibition of 5-HT reuptake in the CNS. This observation could tentatively be used to provide the framework towards elucidating the mechanism and rationale for the use of this plant in traditional medicine in the treatment of depression and affective disorders.
    Matched MeSH terms: Membrane Potentials/drug effects*
  6. Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, Davamani F
    PLoS One, 2019;14(2):e0213079.
    PMID: 30818374 DOI: 10.1371/journal.pone.0213079
    Staphylococcus epidermidis, is a common microflora of human body that can cause opportunistic infections associated with indwelling devices. It is resistant to multiple antibiotics necessitating the need for naturally occurring antibacterial agents. Malaysian propolis, a natural product obtained from beehives exhibits antimicrobial and antibiofilm properties. Chitosan-propolis nanoparticles (CPNP) were prepared using Malaysian propolis and tested for their effect against S. epidermidis. The cationic nanoparticles depicted a zeta potential of +40 and increased the net electric charge (zeta potential) of S. epidermidis from -17 to -11 mV in a concentration-dependent manner whereas, ethanol (Eth) and ethyl acetate (EA) extracts of propolis further decreased the zeta potential from -17 to -20 mV. Confocal laser scanning microscopy (CLSM) depicted that CPNP effectively disrupted biofilm formation by S. epidermidis and decreased viability to ~25% compared to Eth and EA with viability of ~60-70%. CPNP was more effective in reducing the viability of both planktonic as well as biofilm bacteria compared to Eth and EA. At 100 μg/mL concentration, CPNP decreased the survival of biofilm bacteria by ~70% compared to Eth or EA extracts which decreased viability by only 40%-50%. The morphology of bacterial biofilm examined by scanning electron microscopy depicted partial disruption of biofilm by Eth and EA extracts and significant disruption by CPNP reducing bacterial number in the biofilm by ~90%. Real time quantitative PCR analysis of gene expression in treated bacteria showed that genes involved in intercellular adhesion such as IcaABCD, embp and other related genes were significantly downregulated by CPNP. In addition to having a direct inhibitory effect on the survival of S. epidermidis, CPNP showed synergism with the antibiotics rifampicin, ciprofloxacin, vancomycin and doxycycline suggestive of effective treatment regimens. This would help decrease antibiotic treatment dose by at least 4-fold in combination therapies thereby opening up ways of tackling antibiotic resistance in bacteria.
    Matched MeSH terms: Membrane Potentials/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links