The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500K and Raman scattering at the temperature range 10-413K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403K and then sublimates in the temperature range 403-413K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397K is founded to be 121.5J/g.
WO₃-decorated TiO₂ nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H₂O₂ and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W(6+)) in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO₂ during anodization to produce a uniform nanotubular structure of TiO₂ film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO₂ after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet) 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9) and geometric surface area factor (92.0) exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg(2+) to adsorb onto the catalyst surface to undergo reduction to Hg⁰. The incorporation of WO₃ species onto TiO₂ nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO₂ to the conduction band of WO₃.
The present study was undertaken to evaluate the effect of diallylsulphide (DAS) against mercuric chloride (HgCl2)-induced oxidative stress in rat livers. Rats were randomly divided into four groups of six rats each and exposed to HgCl2 (50 mg/kg/body weight (b.w.)) intraperitoneally and/or DAS (200 mg/kg/b.w.) by gavage. HgCl2 administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). However, treatment with DAS markedly attenuated HgCl2-induced biochemical alterations in liver and serum transaminases (AST and ALT; p < 0.05). Further, biochemical results were confirmed by histopathological changes as compared to HgCl2-intoxicated rats. Histopathology of liver also showed that administration of DAS significantly reduced the damage generated by HgCl2 The present study suggests that DAS shows antioxidant activity and plays a protective role against mercury-induced oxidative damage in the rat livers.