Displaying all 5 publications

Abstract:
Sort:
  1. Hendrickson WA, Ward KB
    Biochem Biophys Res Commun, 1975 Oct 27;66(4):1349-56.
    PMID: 5
    Matched MeSH terms: Metalloproteins*
  2. Shoeb Ahmad S, Abdul Ghani S, Hemalata Rajagopal T
    J Curr Glaucoma Pract, 2013 May-Aug;7(2):49-53.
    PMID: 26997782 DOI: 10.5005/jp-journals-10008-1137
    Glaucoma is now regarded as a neurodegenerative disorder. A number of theories including the mechanical and vascular models have been used to explain the pathogenesis of glaucoma. However, there is now increasing evidence of biochemical molecules which may play a part in it's causation. These biochemical mechanisms include the role of excitatory aminoacids, caspases, protein kinases, oxygen free radicals, nitric oxide, TNF-alpha, neurotrophins and metalloproteins. This paper reviews these new developments which form the biochemical basis of glaucomatous neural degeneration. How to cite this article: Ahmad SS, Ghani SA, Rajagopal TH. Current Concepts in the Biochemical Mechanisms of Glaucomatous Neurodegeneration. J Current Glau Prac 2013;7(2):49-53.
    Matched MeSH terms: Metalloproteins
  3. Choong YY, Norli I, Abdullah AZ, Yhaya MF
    Bioresour Technol, 2016 Jun;209:369-79.
    PMID: 27005788 DOI: 10.1016/j.biortech.2016.03.028
    This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability.
    Matched MeSH terms: Metalloproteins
  4. Ang TF, Salleh AB, Normi YM, Leow TC
    3 Biotech, 2018 Jul;8(7):314.
    PMID: 30023146 DOI: 10.1007/s13205-018-1333-9
    Artificial metalloenzymes are unique as they combine the good features of homogeneous and enzymatic catalysts, and they can potentially improve some difficult catalytic assays. This study reports a method that can be used to create an artificial metal-binding site prior to proving it to be functional in a wet lab. Haloalkane dehalogenase was grafted into a metal-binding site to form an artificial metallo-haloalkane dehalogenase and was studied for its potential functionalities in silico. Computational protocols regarding dynamic metal docking were studied using native metalloenzymes and functional artificial metalloenzymes. Using YASARA Structure, a simulation box covering template structure was created to be filled with water molecules followed by one mutated water molecule closest to the metal-binding site to metal ion. A simple energy minimization step was subsequently run using an AMBER force field to allow the metal ion to interact with the metal-binding residues. Long molecular dynamic simulation using YASARA Structure was performed to analyze the stability of the metal-binding site and the distance between metal-binding residues. Metal ions fluctuating around 2.0 Å across a 20 ns simulation indicated a stable metal-binding site. Metal-binding energies were predicted using FoldX, with a native metalloenzyme (carbonic anhydrase) scoring 18.0 kcal/mol and the best mutant model (C1a) scoring 16.4 kcal/mol. Analysis of the metal-binding site geometry was performed using CheckMyMetal, and all scores for the metalloenzymes and mutant models were in an acceptable range. Like native metalloenzymes, the metal-binding site of C1a was supported by residues in the second coordination shell to maintain a more coordinated metal-binding site. Short-chain multihalogenated alkanes (1,2-dibromoethane and 1,2,3-trichloropropane) were able to dock in the active site of C1a. The halides of the substrate were in contact with both the metal and halide-stabilizing residues, thus indicating a better stabilization of the substrate. The simple catalytic mechanism proposed is that the metal ion interacted with halogen and polarized the carbon-halogen bond, thus making the alpha carbon susceptible to attack by nucleophilic hydroxide. The interaction between halogen in the metal ion and halide-stabilizing residues may help to improve the stabilization of the substrate-enzyme complex and reduce the activation energy. This study reports a modified dynamic metal-docking protocol and validation tests to verify the metal-binding site. These approaches can be applied to design different kinds of artificial metalloenzymes or metal-binding sites.
    Matched MeSH terms: Metalloproteins
  5. Ngu LH, Afroze B, Chen BC, Affandi O, Zabedah MY
    Singapore Med J, 2009 Oct;50(10):e365-7.
    PMID: 19907877
    Molybdenum cofactor deficiency is a rare autosomal recessive disorder with devastating neurological manifestations, characterised by neonatal-onset encephalopathy mimicking hypoxic-ischaemic insult, intractable seizure, and feeding and respiratory difficulties. It is often fatal in the early life. We report an affected 8-year-old boy, who presented with severe neurological manifestations since birth, but without clinically-significant seizure. Molybdenum cofactor deficiency must be included in the differential diagnosis of patients presenting with unexplained encephalopathy in the newborn period, and whose neuroimaging findings are consistent with hypoxic ischaemic encephalopathy. The classic laboratory hallmark of this disorder is low serum uric acid, positive urine sulphite dipstick test, and elevated urinary S-sulphocysteine, hypoxanthine and xanthine.
    Matched MeSH terms: Metalloproteins/deficiency*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links