This paper traces the evolution of PBL in the International Medical University over a period
of twenty years; since its inception in 1992 till 2012. It is a record of the reasons for the evolution, the people involved and the strategies adopted. The PBL in IMU has metamorphosed over the years from a paper-based complete case history into its present form of staggered release of information, paper-based or otherwise (videos, web-based, newspaper cuttings, debates). Strategies to improve student and facilitator buy-in, strengthening of facilitator training, adoption of PBL templates, innovations to improve student participation are discussed.
Two types of municipal solid waste (MSW), newly arrived and 2 weeks old, were sampled from a sanitary landfill in Pulau Pinang, Malaysia at a fortnightly interval and kept under field conditions for 2 weeks. A total of 480 kg of each type of MSW was sampled to study species composition and impact of delays in cover soil applications on filth fly emergence. Out of 960 kg of MSW sampled, 9.2 ± 0.5 flies emerged per kilogram. Weekly adult fly emergence rates of newly arrived and 2-week-old waste did not differ significantly and MSW remained suitable for fly breeding for up to 1 month. Eight species of flies emerged from the MSW: namely, Musca domestica, Musca sorbens, Synthesiomyia nudiseta, Hydrotaea chalcogaster, Chrysomya megacephala, Lucilia cuprina, Hemipyrellia ligurriens and Sarcophaga sp. Newly arrived waste was determined to be the main source for M. domestica, C. megacephala and L. cuprina in the landfill owing to significantly higher mean emergence compared with 2-week-old waste. Musca sorbens was found in newly arrived waste but not in 2-week-old waste, suggesting that the species was able to survive transportation to landfill but unable to survive landfill conditions. Hemipyrellia ligurriens, H. chalcogaster and S. nudiseta were not imported into the landfill with MSW and pre-existing flies in and around the landfill itself may be their source. The results show that landfills can be a major source of fly breeding if cover soil or temporary cover is not applied daily or on a regular schedule.
We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22-24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis.
Bioluminescence microscopy is an area attracting considerable interest in the field of cell biology because it offers several advantages over fluorescence microscopy, including no requirement for excitation light and being phototoxicity free. This method requires brighter luciferase for imaging; however, suitable genetic resource material for this purpose is not available at present. To achieve brighter bioluminescence microscopy, we developed a new firefly luciferase. Using the brighter luciferase, a reporter strain of Drosophila Gal4-UAS (Upstream Activating Sequence) system was constructed. This system demonstrated the expression pattern of engrailed, which is a segment polarity gene, during Drosophila metamorphosis by bioluminescence microscopy, and revealed drastic spatiotemporal change in the engrailed expression pattern during head eversion in the early stage of pupation.
The reproductive and developmental characteristics of the nereidid polychaete, Neanthes glandicincta Southern, 1921, commonly recorded in tropical estuaries in the Indo-West Pacific, were examined from Malaysia (the mangrove area of Kuala Ibai, Terengganu) and Thailand (the Lower Songkhla Lagoon) on the east coast of the Malay Peninsula. Epitokous metamorphosis of fully mature males and females and their reproductive swimming behaviour were recorded based on ten Malaysian epitokous specimens, which were collected at night during spring tides in a period of January 2018 to March 2019. Six Thailand epitokes were obtained in February and March 2006 by the laboratory rearing of immature worms. Epitokous metamorphosis is characterised by the enlargement of eyes in both sexes, division of the body into three parts and modification of parapodia with additional lobes in the mid-body of males, and replacement of atokous chaetae in the mid-body by epitokous natatory chaetae, completely in males and incompletely in females. The diameter of coelomic unfertilised eggs in females was 100-140 µm. After fertilisation, each egg formed a jelly layer, inside which embryonic development progressed. Trochophores hatched out of the jelly layer, entering a short free-swimming larval phase followed by demersal life at the early stage of 3-chaetiger nectochaeta one day after fertilisation. Then, the larvae entered benthic life as juveniles, crawling on the bottom, at the late stage of 3-chaetiger nectochaeta two days after fertilisation. The results indicate that N. glandicincta has an annual life cycle, which is usually completed within an estuary with limited larval dispersal ability.
The aim of this study is to determine the Spodoptera exigua larva population in the field and factor affecting their density. Population study of S. exigua larva and its affecting factors was carried out in Sekinchan, Selangor during 2003-2004. The larval density was found fluctuating during the study, where the highest number of larvae was an averaged of 18.17 per m2, while the lowest number was an averaged of 1.5 per m2. The mean number of larvae per plant also varies from 1.83 to 5.42. It was found that the larval density was influenced by the age and availability of the host plant. A total of 1881 larvae were collected, where 18.29 and 20.31% were successfully becoming female and male moths, respectively; 20.63% was being parasitized, where 7.07, 11.43, 0.11 and 2.02% were being parasitized by Microplitis manilae, Chelonus sp., Temelucha sp. and Peribaea orbata, respectively. Besides that, other biotic factors such as fungal or bacterial infection also cause death to the S. exigua larva, where a total of 1.91 and 10.89% were infected by them, respectively. Whilst 16.64% of the collected larvae were dead due to pesticide and 7.44% were not known cause of the death. Besides that, 3.89% of the S. exigua died during pupal stage or emergence. Further, climatic factor was found not influencing the larva populations. There were no correlation between the number of larva collected with the means of temperature, relative humidity and rainfall.
Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.