The Coronavirus Disease-2019 (COVID-19) outbreak is an unprecedented global pandemic, sparking grave public health emergencies. One of the measures to reduce COVID-19 transmissions recommended by the World Health Organization is hand hygiene, i.e., washing hands with soap and water or disinfecting them using an alcohol-based hand sanitiser (ABHS). Unfortunately, competing ABHSs with unknown quality, safety, and efficacy thrived, posing yet another risk to consumers. This study aims to develop, optimise, and validate a gas chromatography-mass spectrometry (GC-MS)-based analytical method to simultaneously identify and quantify ethanol or isopropyl alcohol as the active ingredient in ABHS, with simultaneous determination of methanol as an impurity. The GC-MS was operated in Electron Ionisation mode, and Selected Ion Monitoring was chosen as the data acquisition method for quantitation. The analytical method was validated for liquid and gel ABHSs, covering the specificity, linearity and range, accuracy, and precisions, including the limit of detection and the limit of quantitation. The specificity of each target analyte was established using the optimised chromatographic separation with unique quantifier and qualifier ions. The linearity was ascertained with a coefficient of determination (r2) of > 0.9994 over the corresponding specification range. Respectively, the accuracy and precisions were satisfactory within 98.99 to 101.09% and methanol ranging from 5.3 to 19.4% with respect to the active alcohol percentage, which may pose significant short- and long-term health issues, leading to life-threatening crises for consumers. The method established would benefit in protecting the public against the potential harm due to substandard or unsafe ABHS products, primarily due to the presence of hazardous impurities such as methanol.
The Crocus and Cyclamen genus have been reported to possess diverse biological properties. In the present investigation, two geophytes from these genus, namely Crocus pallasi and Cyclamen cilicium have been studied. The in vitro antioxidant, enzyme inhibitory, and cytotoxic effects of the methanol extracts of Crocus pallasii and Cyclamen cilicium aerial and underground parts were investigated. Antioxidant abilities of the extracts were investigated via different antioxidant assays (metal chelating, radical quenching (ABTS and DPPH), reducing power (CUPRAC and FRAP) and phosphomolybdenum). Cholinesterases, amylase, tyrosinase, and glucosidase were used as target enzymes for detecting enzyme inhibitory abilities of the samples. Regarding the cytotoxic abilities, breast cancer cell lines (MDA-MB 231 and MCF-7) and prostate cancer cell lines (DU-145) were used. The flowers extracts of Crocus pallasii and C. cilicium possessed the highest flavonoid content. The highest phenolic content was recorded from C. cilicium root extract (47.62 mg gallic acid equivalent/g extract). Cyclamen cilicium root extract showed significantly (p Methanolic extracts of C. pallasii and C. cilicium showed toxicity against breast cancer cell lines. In light of the above findings, C. cilicium might be considered as an interesting candidate in the development of anti-cancer agent coupled with antioxidant properties.