Displaying all 11 publications

Abstract:
Sort:
  1. Usman A, Chantrapromma S, Fun HK, Poh BL, Karalai C
    Acta Crystallogr C, 2002 Jan;58(Pt 1):o48-50.
    PMID: 11781494
    In the title complex, C6H12N4*C8H8O3, the hexamethylenetetramine molecule accepts a single intermolecular O-H...N hydrogen bond from the hydroxy group of the 4-hydroxy-3-methoxybenzaldehyde moiety. The non-centrosymmetric crystal structure is built from alternating molecular sheets of 4-hydroxy-3-methoxybenzaldehyde and hexamethylenetetramine molecules, and is stabilized by intermolecular O-H...N, C-H...O and C-H...pi interactions.
    Matched MeSH terms: Methenamine
  2. Chantrapromma S, Usman A, Fun HK, Poh BL, Karalai C
    Acta Crystallogr C, 2002 Nov;58(Pt 11):o675-7.
    PMID: 12415179
    In the title adduct, 1,3,5,7-tetraazatricyclo[3.3.1.1(3,7)]decane-4-nitrobenzene-1,2-diol-water (1/2/1), C(6)H(12)N(4).2C(6)H(5)NO(4).H(2)O, the hexamethylenetetramine molecule acts as an acceptor of intermolecular O-H.N hydrogen-bonding interactions from the water molecule and the hydroxy groups of one of the two symmetry-independent 4-nitrocatechol molecules. The structure is built from molecular layers which are stabilized by three intermolecular O-H.O, two intermolecular O-H.N and four intermolecular C-H.O hydrogen bonds. The layers are further interconnected by one additional intermolecular O-H.N and two intermolecular C-H.O hydrogen bonds.
    Matched MeSH terms: Methenamine
  3. Pung S, Ong C, Mohd Isha K, Othman M
    Sains Malaysiana, 2014;43:273-281.
    Cu-doped ZnO nanorods were synthesized by sol-gel method using zinc nitrate tetrahydrate, methenamine and cupric acetate monohydrate as precursors. The as-synthesized ZnO nanorods have a twin-rod structure. The polar (002) surface of ZnO nanorods, which could be either negatively charge (O-terminated) or positively charged (Zn- terminated), was responsible for the formation of twin-rod structure. The results showed that the size, aspect ratio, crystallinity and c-lattice parameter of Cu doped ZnO nanorods decreased with increasing of Cu dopant concentration. In fact, the presence of Cu retarded the growth of ZnO nanorods in its preferred growth direction, i.e. (0001). The XPS analysis indicates that Cu ions were oxidized (Cu2+) and substituted into the ZnO lattice at the Zn2+ site. The presence of Cu reduced the optical bandgap of ZnO from 3.34 eV (undoped ZnO nanorods) to 3.31 eV (20 mol% Cu doped ZnO). Besides, it induced a visible PL emission at 2.97 eV, which could be related to the transition of electrons from conduction band (Ec) to Cu acceptor energy level (Ev + 0.45 eV) radiatively.
    Matched MeSH terms: Methenamine
  4. Aziz NS, Mahmood MR, Yasui K, Hashim AM
    Nanoscale Res Lett, 2014 Feb 26;9(1):95.
    PMID: 24568668 DOI: 10.1186/1556-276X-9-95
    We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.
    Matched MeSH terms: Methenamine
  5. Usman A, Chantrapromma S, Fun HK
    Acta Crystallogr C, 2001 Dec;57(Pt 12):1443-6.
    PMID: 11740112
    The title compound, 3,5,7-triaza-1-azoniatricyclo[3.3.1.1(3,7)]decane 2,4-dinitrophenolate monohydrate, C6H13N4+*C6H3N2O5-*H2O, the 1:1 hydrate adduct of hexamethylenetetramine (HMT) and 2,4-dinitrophenol, undergoes a temperature phase transition. In the room-temperature phase, the adduct crystallizes in the monoclinic P2(1)/m space group, whereas in the low-temperature phase, the adduct crystallizes in the triclinic P1 space group. This phase transition is reversible, with the transition temperature at 273 K, and the phase transition is governed by hydrogen bonds and weak interactions. In both these temperature-dependent polymorphs, the crystal structure is alternately layered with sheets of hexamethylenetetramine and sheets of dinitrophenol stacked along the c axis. The hexamethylenetetramine and dinitrophenol moieties are linked by intermolecular hydrogen bonds. The water molecule in the adduct plays an important role, forming O-H...O hydrogen bonds which, together with C-H...O hydrogen bonds, bridge the adducts into molecular ribbons. Extra hydrogen bonds and weak interactions exist for the low-temperature polymorph and these interconnect the molecular ribbons into a three-dimensional packing structure. Also in these two temperature-dependent polymorphs, dinitrophenol acts as a hydrogen-bond acceptor and HMT acts as a hydrogen-bond donor.
    Matched MeSH terms: Methenamine
  6. Md Saad SK, Ali Umar A, Ali Umar MI, Tomitori M, Abd Rahman MY, Mat Salleh M, et al.
    ACS Omega, 2018 Mar 31;3(3):2579-2587.
    PMID: 31458546 DOI: 10.1021/acsomega.8b00109
    This paper reports the synthesis of two-dimensional, hierarchical, porous, and (001)-faceted metal (Ag, Zn, and Al)-doped TiO2 nanostructures (TNSs) and the study of their photocatalytic activity. Two-dimensional metal-doped TNSs were synthesized using the hydrolysis of ammonium hexafluorotitanate in the presence of hexamethylenetetramine and metal precursors. Typical morphology of metal-doped TNSs is a hierarchical nanosheet that is composed of randomly stacked nanocubes (dimensions of up to 5 μm and 200 nm in edge length and thickness, respectively) and has dominant (001) facets exposed. Raman analysis and X-ray photoelectron spectroscopy results indicated that the Ag doping, compared to Zn and Al, much improves the crystallinity degree and at the same time dramatically lowers the valence state binding energy of the TNS and provides an additional dopant oxidation state into the system for an enhanced electron-transfer process and surface reaction. These are assumed to enhance the photocatalytic of the TNS. In a model of photocatalytic reaction, that is, rhodamine B degradation, the AgTNS demonstrates a high photocatalytic activity by converting approximately 91% of rhodamine B within only 120 min, equivalent to a rate constant of 0.018 m-1 and ToN and ToF of 94 and 1.57 min-1, respectively, or 91.1 mmol mg-1 W-1 degradation when normalized to used light source intensity, which is approximately 2 times higher than the pristine TNS and several order higher when compared to Zn- and Al-doped TNSs. Improvement of the crystallinity degree, decrease in the defect density and the photogenerated electron and hole recombination, and increase of the oxygen vacancy in the AgTNS are found to be the key factors for the enhancement of the photocatalytic properties. This work provides a straightforward strategy for the preparation of high-energy (001) faceted, two-dimensional, hierarchical, and porous Ag-doped TNSs for potential use in photocatalysis and photoelectrochemical application.
    Matched MeSH terms: Methenamine
  7. Ali Umar A, Md Saad SK, Mat Salleh M
    ACS Omega, 2017 Jul 31;2(7):3325-3332.
    PMID: 31457657 DOI: 10.1021/acsomega.7b00580
    Newly discovered two-dimensional (2D) atomic crystals (nanosheet) of platinum diselenide (PtSe2) have progressively attracted attention due to their expected high performance in catalysis, sensing, electronics, and optoelectronics applications. Further extraordinary physicochemical properties are expected if these nanosheets of platinum diselenide can possess mesoporosity as this may enable a high range of molecular adsorption, enhancing their functionalities in catalysis, batteries, supercapacitors, and sensing. Here, we present for the first time a straightforward, aqueous-phase synthetic strategy for the preparation of scalable nanosheets of platinum diselenide with mesoporous structure via a surfactant-templated self-assembly followed by a thermal annealing phase-transformation process. We used hexamethylenetetramine as a hexagonal honeycomb (sp2-sp3 orbital) scaffold for assembling the Pt and Se organic complexes to form the nanosheet structure, which is stable, preserving the 2D structure and mesoporosity during a thermal annealing at 500 °C. Density functional theory analysis then indicated that the mesoporous nanosheets of platinum diselenide exhibit a high free-energy and large density of π electrons crossing the Fermi level, inferring a high-catalytic performance. This effortless strategy is currently being extended to the synthesis of other transition metal dichalcogenides, including the preparation of multi-metal atomic dichalcogenide nanosheets, for a wide variety of scientific and technological applications.
    Matched MeSH terms: Methenamine
  8. Kamaruddin SA, Chan KY, Sahdan MZ, Rusop M, Saim H
    J Nanosci Nanotechnol, 2010 Sep;10(9):5618-22.
    PMID: 21133082
    Zinc oxide (ZnO) is an emerging material in large area electronic applications such as thin-film solar cells and transistors. We report on the fabrication and characterization of ZnO microstructures and nanostructures. The ZnO microstructures and nanostructures have been synthesized using sol-gel immerse technique on oxidized silicon substrates. Different precursor's concentrations ranging from 0.0001 M to 0.01 M (M=molarity) using zinc nitrate hexahydrate [Zn(NO3)2. 6H2O] and hexamethylenetetramine [C6H12N4] were employed in the synthesis of the ZnO structures. The surface morphologies were examined using scanning electron microscope (SEM) and atomic force microscope (AFM). In order to investigate the structural properties, the ZnO microstructures and nanostructures were measured using X-ray diffractometer (XRD). The optical properties of the ZnO structures were measured using photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies.
    Matched MeSH terms: Methenamine
  9. Li A, Abrahim A, Islam M, Mejías E, Hafizati Abdul Halim N, Frew R, et al.
    Food Chem, 2024 Feb 15;434:137451.
    PMID: 37748289 DOI: 10.1016/j.foodchem.2023.137451
    One of the most common types of adulteration of honey involves the addition of invert sugar syrups. A new method was developed to measure the stable isotope ratios of carbon and carbon-bound non-exchangeable (CBNE) hydrogen from specific molecular positions in fructose and glucose in honey. This was achieved through periodate oxidation of the sugars to produce formaldehyde, followed by reaction with ammonia to form hexamethylenetetramine (HMT). The preparation was simplified, optimized, and validated by isotopic analysis of replicate syntheses of HMT from fructose, glucose, sugar syrup and a representative authentic honey sample. The optimized method had a repeatability standard deviation from 1.5‰ to 3.0‰ and from 0.1‰ to 0.4‰ for δ2H and δ13C, respectively. This methodology has advantages over alternative isotopic methods, for measuring CBNE hydrogen isotope ratios in sugars, in terms of time, sensitivity and operability and offers a complementary method to differentiate authentic honey from invert sugar syrups.
    Matched MeSH terms: Methenamine
  10. Oyama M, Akrajasali Umar, Muhammad M Atsalleh, Burhanuddin Eopmajlis
    Sains Malaysiana, 2011;40:1345-1353.
    Metal nanoparticles having interesting shapes can be prepared in aqueous solutions through simple reductions of metal ions with the presence of some additive reagents, such as cetyltrimethylammonium bromide and hexamethylenetetramine. In this review, some successful results for shape-controlled synthesis of metal nanoparticles in our group are summarized, which includes the synthesis of palladium nanocubes, palladium nanobricks, gold nanotripods. In addition, combining with indium tin oxide electrode surfaces, shape-controlled growth is shown to be possible to form gold nanoplates and copper oxide nanowires. Even in relatively mild synthetic conditions, interesting shape-controlled synthesis of metal nanoparticles is possible.
    Matched MeSH terms: Methenamine
  11. Choo ZW, Chakravarthi S, Wong SF, Nagaraja HS, Thanikachalam PM, Mak JW, et al.
    Oncol Lett, 2010 Jan;1(1):215-222.
    PMID: 22966285
    Systemic candidiasis is a fungal infection which coupled with solid malignancies places patients at high risk of succumbing to the disease. Few studies have shown evidence of the relationship between systemic candidiasis and malignancy-induced immunosuppression disease especially in breast cancer. At present, animal studies that exclusively demonstrate this relationship have yet to be conducted. The exact causative mechanism of systemic candidiasis is currently under much speculation. This study therefore aimed to demonstrate this relationship by observing the histopathological changes of organs harvested from female Balb/c mice which were experimentally induced with breast cancer and inoculated with systemic candidiasis. The mice were randomly assigned to five different groups (n=12). The first group (group 1) was injected with phosphate buffer solution, the second (group 2) with systemic candidiasis, the third (group 3) with breast cancer and the final two groups (groups 4 and 5) had both candidiasis and breast cancer at two different doses of candidiasis, respectively. Inoculation of mice with systemic candidiasis was performed by an intravenous injection of Candida albicans via the tail vein following successful culture methods. Induction of mice with breast cancer occurred via injection of 4T1 cancer cells at the right axillary mammary fatpad after effective culture methods. The prepared slides with organ tissues were stained with hematoxylin and eosin, periodic acidic schiff and gomori methenamine silver stains for a histopathological analysis. Grading of primary tumour and identification of metastatic deposits, as well as scoring of inflammation and congestion in all the respective organs was conducted. Statistical tests performed to compare groups 2 and 4 showed that group 4 exhibited a highly statistically significant increase in organ inflammation and congestion (p<0.01). The median severity of candidiasis in the kidneys and liver also increased in group 4 as compared to group 2. In conclusion, based on the above evidence, systemic candidiasis significantly increased in mice with breast cancer.
    Matched MeSH terms: Methenamine
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links