We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3' and/or 5' end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5' differences and in support of this we report that a 5' isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5' isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes.
Oligonucleotide-based therapies are advanced novel interventions used in the management of various respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). These agents primarily act by gene silencing or RNA interference. Better methodologies and techniques are the need of the hour that can deliver these agents to tissues and cells in a target specific manner by which their maximum potential can be reached in the management of chronic inflammatory diseases. Nanoparticles play an important role in the target-specific delivery of drugs. In addition, oligonucleotides also are extensively used for gene transfer in the form of polymeric, liposomal and inorganic carrier materials. Therefore, the current review focuses on various novel dosage forms like nanoparticles, liposomes that can be used efficiently for the delivery of various oligonucleotides such as siRNA and miRNA. We also discuss the future perspectives and targets for oligonucleotides in the management of respiratory diseases.
Ischemic stroke is a major cause of mortality and morbidity globally. Among the ischemic stroke subtypes, cardioembolic stroke is with poor functional outcome (Modified Rankin score ≥ 2). Early diagnosis of cardioembolic stroke will prove beneficial. This study examined the microRNAs targeting cluster of differentiation 46 (CD46), a potential biomarker for cardioembolic stroke. CD46 mRNA level was shown to be differentially expressed (p < 0.001) between cardioembolic stroke (median = 1.32) and non-cardioembolic stroke subtypes (large artery stroke median = 5.05; small vessel stroke median = 6.45). Bioinformatic search showed that miR-19a, -20a, -185 and -374b were found to target CD46 mRNA and further verified by luciferase reporter assay. The levels of miRNAs targeting CD46 were significantly reduced (p < 0.05) in non-cardioembolic stroke patients (large artery stroke median: miR-19a = 0.63, miR-20a = 0.42, miR-185 = 0.32, miR-374b = 0.27; small artery stroke median: miR-19a = 0.07, miR-20a = 0.06, miR-185 = 0.07, miR-374b = 0.05) as compared to cardioembolic stroke patients (median: miR-19a = 2.69, miR-20a = 1.36, miR-185 = 1.05, miR-374b = 1.23). ROC curve showed that the miRNAs could distinguish cardioembolic stroke from non-cardioembolic stroke with better AUC value as compared to CD46. Endogenous expression of CD46 in Human Umbilical Vein Endothelial Cells (HUVECs) were found to be regulated by miR-19a and miR-20a. Thus implicating that miR-19a and -20a may play a role in pathogenesis of cardioembolic stroke, possibly via the endothelial cells.
The Hand, Foot and Mouth Disease (HFMD) is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. Common HFMD symptoms are high fever (≥ 39°C), rashes, and ulcers but complications due to virulent EV-A71 may arise leading to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents. Recent studies have reported the emergence of novel antiviral agents and vaccines that utilize microRNAs (miRNAs). They belong to a class of small (19-24 nt) non coding RNA molecules. As miRNAs play a major role in the host regulatory system, there is a huge opportunity for interplay between host miRNAs and EV-A71 expressions. A total of 42 out of 64 miRNAs were up-regulated in EV-A71-infected cells. There was consistent up-regulation of miR-1246 gene expression that targeted the DLG3 gene which contributes to neurological pathogenesis. In contrast, miR-30a that targets calcium channels for membrane transportation was down-regulated. This leads to repression of EV-A71 replication. The impact of host miRNAs on immune activation, shutdown of host protein synthesis, apoptosis, signal transduction and viral replication are discussed. miRNAs have been used in the construction of live attenuated vaccines (LAV) such as the poliovirus LAV that has miRNA binding sites for let-7a or miR-124a. The miRNAbearing vaccine will not replicate in neuronal cells carrying the corresponding miRNA but could still replicate in the gastrointestinal tract and hence remains to act as immunogens. As such, miRNAs are attractive candidates to be developed as vaccines and antivirals.