Displaying all 6 publications

Abstract:
Sort:
  1. Siti Sarah CO, Nur Husna SM, Md Shukri N, Wong KK, Mohd Ashari NS
    PeerJ, 2022;10:e13314.
    PMID: 35480562 DOI: 10.7717/peerj.13314
    Allergic rhinitis (AR) is a common allergic disease characterized by disruption of nasal epithelial barrier. In this study, we investigated the mRNA expression of zonula occludens-1 (ZO-1), ZO-2 and ZO-3 and histone deacetylase 1 (HDAC1) and HDAC2 in AR patients compared to healthy controls. RNA samples were extracted from nasal epithelial cells of house dust mites (HDMs)-sensitized AR patients and healthy controls (n = 28 in each group). The RNAs were reverse transcribed into cDNAs for measurement of ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2 expression levels by quantitative PCR. The mRNA expression of ZO-1 was significantly decreased in AR patients compared to healthy controls (p = 0.010). No significant difference was observed in the expression levels of ZO-2, ZO-3, HDAC1 and HDAC2 in AR patients compared to healthy controls. We found significant associations of higher HDAC2 levels in AR patients with lower frequency of changing bedsheet (p = 0.043) and with AR patients sensitized to Dermatophagoides farinae (p = 0.041). Higher expression of ZO-2 was observed in AR patients who had pets (p = 0.007). In conclusion, our data indicated that ZO-1 expression was lower in AR patients contributing to decreased integrity of nasal epithelial barrier integrity, and HDAC2 may be involved in the pathogenesis of the disease.
    Matched MeSH terms: Nasal Mucosa/metabolism
  2. Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H
    Int J Pharm, 2019 Jun 30;565:258-268.
    PMID: 31095983 DOI: 10.1016/j.ijpharm.2019.05.032
    Intranasal delivery has shown to circumvent blood-brain-barrier (BBB) and deliver the drugs into the CNS at a higher rate and extent than other conventional routes. The mechanism of drug transport from nose-to-brain is not fully understood yet, but several neuronal pathways are considered to be involved. Intranasal nanoemulsion for brain targeting is investigated extensively. Higher brain distribution of drug after administering intranasal nanoemulsion was established by many researchers. Issues with nasomucosal clearance are solved by formulating modified nanoemulsion; for instance, mucoadhesive nanoemulsion or in situ nanoemulgel. However, no intranasal nanoemulsion for brain targeted drug delivery has been able to cross the way from 'benches to bed-side' of patients. Possibilities of toxicity by repeated administration, irregular nasal absorption during the diseased condition, use of a high amount of surfactants are few of the persisting challenges that need to overcome in coming days. Understanding the ways how current developments has solved some challenges is necessary. At the same time, the future direction of the research on intranasal nanoemulsion should be figured out based on existing challenges. This review is focused on the current developments of intranasal nanoemulsion with special emphasis on the existing challenges that would help to set future research direction.
    Matched MeSH terms: Nasal Mucosa/metabolism*
  3. Nur Husna SM, Siti Sarah CO, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK
    Sci Rep, 2021 01 13;11(1):1245.
    PMID: 33441633 DOI: 10.1038/s41598-020-79208-y
    The breakdown of nasal epithelial barrier occurs in allergic rhinitis (AR) patients. Impairment of cell junction molecules including tight junctions (TJs) and desmosomes plays causative roles in the pathogenesis of AR. In this study, we investigated the transcript expression levels of TJs including occludin (OCLN), claudin-3 and -7 (CLDN3 and CLDN7), desmoglein 3 (DSG3) and thymic stromal lymphopoietin (TSLP) in AR patients (n = 30) and non-allergic controls (n = 30). Nasal epithelial cells of non-allergic controls and AR patients were collected to examine their mRNA expression levels, and to correlate with clinico-demographical and environmental parameters. We demonstrated that the expression of OCLN (p = 0.009), CLDN3 (p = 0.032) or CLDN7 (p = 0.004) transcript was significantly lower in AR patients compared with non-allergic controls. No significant difference was observed in the expression of DSG3 (p = 0.750) or TSLP (p = 0.991) transcript in AR patients compared with non-allergic controls. A significant association between urban locations and lower OCLN expression (p = 0.010), or exposure to second-hand smoke with lower CLDN7 expression (p = 0.042) was found in AR patients. Interestingly, none of the TJs expression was significantly associated with having pets, frequency of changing bedsheet and housekeeping. These results suggest that defective nasal epithelial barrier in AR patients is attributable to reduced expression of OCLN and CLDN7 associated with urban locations and exposure to second-hand smoke, supporting recent findings that air pollution represents one of the causes of AR.
    Matched MeSH terms: Nasal Mucosa/metabolism*
  4. Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U
    Pharm Nanotechnol, 2017;5(3):203-214.
    PMID: 28521670 DOI: 10.2174/2211738505666170515113936
    BACKGROUND: The convoluted pathophysiology of brain disorders along with penetration issue of drugs to brain represents major hurdle that requires some novel therapies. The blood-brain barrier (BBB) denotes a rigid barrier for delivery of therapeutics in vivo; to overcome this barrier, intranasal delivery is an excellent strategy to deliver the drug directly to brain via olfactory and trigeminal nerve pathways that originate as olfactory neuro-epithelium in the nasal cavity and terminate in brain.

    METHOD: Kind of therapeutics like low molecular weight drugs can be delivered to the CNS via this route. In this review, we have outlined the anatomy and physiological aspect of nasal mucosa, certain hurdles, various strategies including importance of muco-adhesive polymers to increase the drug delivery and possible clinical prospects that partly contribute in intranasal drug delivery.

    RESULTS: Exhaustive literature survey related to intranasal drug delivery system revealed the new strategy that circumvents the BBB, based on non-invasive concept for treating various CNS disorders. Numerous advantages like prompt effects, self-medication through wide-ranging devices, and the frequent as well protracted dosing are associated with this novel route.

    CONCLUSION: Recently few reports have proven that nasal to brain drug delivery system bypasses the BBB. This novel route is associated with targeting efficiency and less exposure of therapeutic substances to non-target site. Nevertheless, this route desires much more research into the safe transferring of therapeutics to the brain. Role of muco-adhesive polymer and surface modification with specific ligands are area of interest of researcher to explore more about this.

    Matched MeSH terms: Nasal Mucosa/metabolism
  5. Tan SN, Sim SP
    BMC Cancer, 2018 04 12;18(1):409.
    PMID: 29649994 DOI: 10.1186/s12885-018-4327-4
    BACKGROUND: Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC.

    METHODS: We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced.

    RESULTS: BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient.

    CONCLUSIONS: These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.

    Matched MeSH terms: Nasal Mucosa/metabolism*
  6. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    Int J Pharm, 2020 Aug 30;586:119499.
    PMID: 32505580 DOI: 10.1016/j.ijpharm.2020.119499
    The tight junctions between capillary endothelial cells of the blood-brain barrier (BBB) restricts the entry of therapeutics into the brain. Potential of the intranasal delivery tool has been explored in administering the therapeutics directly to the brain, thus bypassing BBB. The objective of this study was to develop and optimize an intranasal mucoadhesive nanoemulsion (MNE) of asenapine maleate (ASP) in order to enhance the nasomucosal adhesion and direct brain targetability for improved efficacy and safety. Box-Behnken statistical design was used to recognize the crucial formulation variables influencing droplet size, size distribution and surface charge of ASP-NE. ASP-MNE was obtained by incorporating GRAS mucoadhesive polymer, Carbopol 971 in the optimized NE. Optimized ASP-MNE displayed spherical morphology with a droplet size of 21.2 ± 0.15 nm and 0.355 polydispersity index. Improved ex-vivo permeation was observed in ASP-NE and ASP-MNE, compared to the ASP-solution. Finally, the optimized formulation was found to be safe in ex-vivo ciliotoxicity study on sheep nasal mucosa. The single-dose pharmacokinetic study in male Wistar rats revealed a significant increase in concentration of ASP in the brain upon intranasal administration of ASP-MNE, with a maximum of 284.33 ± 5.5 ng/mL. The time required to reach maximum brain concentration (1 h) was reduced compared to intravenous administration of ASP-NE (3 h). Furthermore, it has been established during the course of present study, that the brain targeting capability of ASP via intranasal administration had enhanced drug-targeting efficiency and drug-targeting potential. In the animal behavioral studies, no extrapyramidal symptoms were observed after intranasal administration of ASP-MNE, while good locomotor activity and hind-limb retraction test established its antipsychotic activity in treated animals. Thus, it can be concluded that the developed intranasal ASP-MNE could be used as an effective and safe tool for brain targeting of ASP in the treatment of psychotic disorders.
    Matched MeSH terms: Nasal Mucosa/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links