METHODS: We first generated 14 primary human subject-derived ASCs and stable immortalized CD10 knockdown and overexpression lines for 4 subjects by the lentiviral transduction system. To evaluate the role of CD10 in adipogenesis, the adipogenic potential of the human subject samples were scored against their respective CD10 transcript levels. Assessment of UCP1 expression levels was performed to correlate CD10 levels to the browning potential of mature ASCs. Quantitative polymerase chain reaction (qPCR) and Western blot analysis were performed to determine CD10-dependent regulation of various targets. Seahorse analysis of oxidative metabolism and lipolysis assay were studied. Lastly, as a proof-of-concept study, we used CD10 as a prospective marker for screening nuclear receptor ligands library.
RESULTS: We identified intrinsic CD10 levels as a positive determinant of adipocyte maturation as well as browning potential of ASCs. Interestingly, CD10 regulates ASC's adipogenic maturation non-canonically by modulating endogenous lipolysis without affecting the classical peroxisome proliferator-activated receptor gamma (PPARγ)-dependent adipogenic pathways. Furthermore, our CD10-mediated screening analysis identified dexamethasone and retinoic acid as stimulator and inhibitor of adipogenesis, respectively, indicating CD10 as a useful biomarker for pro-adipogenic drug screening.
CONCLUSION: Overall, we establish CD10 as a functionally relevant ASC biomarker, which may be a prerequisite to identify high-quality cell populations for improving metabolic diseases.
MATERIALS AND METHODS: We searched for FL-LP in our institution from 2000 to 2018 and characterised the neoplastic cells by flow cytometry, immunohistochemistry and fluorescence in situ hybridization. Thirteen (6.1%) of 212 FL cases were FL-LP, all de novo neoplasms. The leukaemic cells were small in 12 cases and large in one. All had concurrent FL, mostly (92%; 12/13) low-grade. The single case with large leukaemic cells had a concurrent primary splenic low-grade FL and a double-hit large B-cell lymphoma in the marrow.
RESULTS: CD10 was expressed in the leukaemic cells in 38% (5/13) cases by flow cytometry and in 77% (10/13) cases in tumours (p= 0.0471). IGH/BCL2 reciprocal translocation was identified in 85% (11/13) cases. Most patients were treated with chemotherapy. In a median follow-up time of 36 months, nine patients were in complete remission. The 2- and 5-year survival rates were at 100% and 83%, respectively. In this study, we characterised a series of de novo FL-LP in Taiwan. All patients had concurrent nodal and/or tissue tumours, which might suggest that these patients seek medical help too late.
CONCLUSION: The lower CD10 expression rate by flow cytometry than by immunohistochemistry might be due to different epitopes for these assays. Alternatively, loss of CD10 expression might play a role in the pathogenesis of leukaemic change. The clinical course of FL-LP could be aggressive, but a significant proportion of the patients obtained complete remission with chemotherapy.
METHODS: The transcriptomes were sequenced on the Illumina HiSeq platform, assembled and followed by transcript clustering and annotations for gene expression and function. Pairwise or multiple sequence alignments were conducted on the toxin genes expressed. Substitution rates were studied for the major toxins co-expressed in NK-M and NK-T.
RESULTS AND DISCUSSION: The toxin transcripts showed high redundancy (41-82% of the total mRNA expression) and comprised 23 gene families expressed in NK-M and NK-T, respectively (22 gene families were co-expressed). Among the venom genes, three-finger toxins (3FTxs) predominated in the expression, with multiple sequences noted. Comparative analysis and selection study revealed that 3FTxs are genetically conserved between the geographical specimens whilst demonstrating distinct differential expression patterns, implying gene up-regulation for selected principal toxins, or alternatively, enhanced transcript degradation or lack of transcription of certain traits. One of the striking features that elucidates the inter-geographical venom variation is the up-regulation of α-neurotoxins (constitutes ∼80.0% of toxin's fragments per kilobase of exon model per million mapped reads (FPKM)), particularly the long-chain α-elapitoxin-Nk2a (48.3%) in NK-T but only 1.7% was noted in NK-M. Instead, short neurotoxin isoforms were up-regulated in NK-M (46.4%). Another distinct transcriptional pattern observed is the exclusively and abundantly expressed cytotoxin CTX-3 in NK-T. The findings suggested correlation with the geographical variation in proteome and toxicity of the venom, and support the call for optimising antivenom production and use in the region. Besides, the current study uncovered full and partial sequences of numerous toxin genes from N. kaouthia which have not been reported hitherto; these include N. kaouthia-specific l-amino acid oxidase (LAAO), snake venom serine protease (SVSP), cystatin, acetylcholinesterase (AChE), hyaluronidase (HYA), waprin, phospholipase B (PLB), aminopeptidase (AP), neprilysin, etc. Taken together, the findings further enrich the snake toxin database and provide deeper insights into the genetic diversity of cobra venom toxins.