Lipopolysaccharide (LPS) of P. multocida B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffaloes, is considered as the main virulence factor and contribute in the pathogenesis of the disease. Recent studies provided evidences about the involvement of the nervous system in pathogenesis of HS. However, the role of P. multocida B:2 immunogens, especially the LPS is still uncovered. Therefore, this study was designed to investigate the role of P. multocida B:2 LPS to induce pathological changes in the nervous system. Nine eight-month-old, clinically healthy buffalo calves were used and distributed into three groups. Calves of Group 1 and 2 were inoculated orally and intravenously with 10 ml of LPS broth extract represent 1 × 10(12) cfu/ml of P. multocida B:2, respectively, while calves of Group 3 were inoculated orally with 10 ml of phosphate buffer saline as a control. Significant differences were found in the mean scores for clinical signs, post mortem and histopathological changes especially in Group 2, which mainly affect different anatomic regions of the nervous system, mainly the brain. On the other hand, lower scores have been recorded for clinical signs, gross and histopathological changes in Group 1. These results provide for the first time strong evidence about the ability of P. multocida B:2 LPS to cross the blood brain barrier and induce pathological changes in the nervous system of the affected buffalo calves.
The present study aimed to investigate the involvement of the angiogenic marker vascular endothelia growth factor (VEGF) and apoptotic markers of Bcl-2 and Bax in the neurons and astrocytes in the brain infected by Mycobacterium tuberculosis. The immunohistochemistry staining was performed to analyze the expression of the VEGF, Bcl-2 and Bax in the astrocytes and neurons. The expression of VEGF was high in neurons and astrocytes in both the infected brain and control tissues with no difference of angiogenic activity (p = 0.40). Higher Bcl-2 expression was seen in astrocytes of infected brain tissues compared to the control tissues (p = 0.004) promoted a higher anti-apoptotic activity in astrocytes. The neurons expressed strong Bax expression in the infected brain tissues compared to the control tissues (p
Matched MeSH terms: Tuberculosis, Central Nervous System/microbiology