Interferon (IFN) can activate Signal Transducer and Activator of Transcription (STAT) proteins to establish a cellular antiviral response and inhibit virus replication. Many viruses have evolved strategies to inhibit this antiviral mechanism, but paramyxoviruses are unique in their abilities to directly target the IFN-responsive STAT proteins. Hendra virus and Nipah virus (Henipaviruses) are recently emerged paramyxoviruses that are the causative agents of fatal disease outbreaks in Australia and peninsular Malaysia. Similar to other paramyxoviruses, Henipaviruses inhibit IFN signal transduction through a virus-encoded protein called V. Recent studies have shown that Henipavirus V proteins target STAT proteins by inducing the formation of cytoplasmically localized high molecular weight STAT-containing complexes. This sequestration of STAT1 and STAT2 prevents STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion, they represent logical targets for therapeutics directed against Henipavirus epidemics.
The nucleocapsid (N) protein of Nipah virus (NiV) is a major constituent of the viral proteins which play a role in encapsidation, regulating the transcription and replication of the viral genome. To investigate the use of a fusion system to aid the purification of the recombinant N protein for structural studies and potential use as a diagnostic reagent, the NiV N gene was cloned into the pFastBacHT vector and the His-tagged fusion protein was expressed in Sf9 insect cells by recombinant baculovirus. Western blot analysis of the recombinant fusion protein with anti-NiV antibodies produced a band of approximately 62 kDa. A time course study showed that the highest level of expression was achieved after 3 days of incubation. Electron microscopic analysis of the NiV recombinant N fusion protein purified on a nickel-nitrilotriacetic acid resin column revealed different types of structures, including spherical, ring-like, and herringbone-like particles. The light-scattering measurements of the recombinant N protein also confirmed the polydispersity of the sample with hyrdrodynamic radii of small and large types. The optical density spectra of the purified recombinant fusion protein revealed a high A(260)/A(280) ratio, indicating the presence of nucleic acids. Western blotting and enzyme-linked immunosorbent assay results showed that the recombinant N protein exhibited the antigenic sites and conformation necessary for specific antigen-antibody recognition.
Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis.
The broad species tropism of Nipah virus (NiV) coupled with its high pathogenicity demand a rapid search for a new biomarker candidate for diagnosis. The matrix (M) protein was expressed in Escherichia coli and purified using a Ni-NTA affinity column chromatography and sucrose density gradient centrifugation. The recombinant M protein with the molecular mass (Mr) of about 43 kDa was detected by anti-NiV serum and anti-myc antibody. About 50% of the M protein was found to be soluble and localized in cytoplasm when the cells were grown at 30 degrees C. Electron microscopic analysis showed that the purified M protein assembled into spherical particles of different sizes with diameters ranging from 20 to 50 nm. The purified M protein showed significant reactivity with the swine sera collected during the NiV outbreak, demonstrating its potential as a diagnostic reagent.
The glycoprotein (G) of Nipah virus (NiV) is important for virus infectivity and induction of the protective immunity. In this study, the extra-cellular domain of NiV G protein was fused with hexahistidine residues at its N-terminal end and expressed in Escherichia coli. The expression under transcriptional regulation of T7 promoter yielded insoluble protein aggregates in the form of inclusion bodies. The inclusion bodies were solubilized with 8 M urea and the protein was purified to homogeneity under denaturing conditions using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The denatured protein was renatured by gradual removal of the urea. Light scattering analysis of the purified protein showed primarily monodispersity. The purified protein showed significant reactivity with the antibodies present in the sera of NiV-infected swine, as demonstrated in Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Taken together, the data indicate the potential usefulness of the purified G protein for structural or functional studies and the development of immunoassay for detection of the NiV antibodies.
Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.