Displaying all 2 publications

Abstract:
Sort:
  1. Pian AK, Foong CP, Hamid RA
    Life Sci, 2022 Dec 15;311(Pt B):121161.
    PMID: 36375571 DOI: 10.1016/j.lfs.2022.121161
    We have previously reported the inhibition of thioredoxin reductase (TrxR) and invasion by tricyclohexylphosphine gold (I) n-mercaptobenzoate (n = 2, 3, 4) labeled as 1-3 towards MCF-7 cells, in vitro. Nevertheless, the mode of death and its apoptotic pathway has yet to be revealed. The main aim of this study is to investigate the anti-neoplastic activity of this phosphanegold (I) thiolates against breast adenocarcinoma cells, MCF-7. Herein, we explored the role of gold(I) series, 1-3 for their apoptosis-inducing ability against MCF-7 cells. They were scrutinized for their antiproliferative activities which exhibited their IC50 values of 8.14 μM ± 0.10, 7.26 μM ± 0.33, and 9.03 μM ± 0.69, respectively, and indicated better cytotoxicities than that of cisplatin (positive control). Further, the mechanisms of their actions were studied by analyzing the status of ROS generation (by DCFH-DA), cytochrome c release (by ELISA), and activation of caspases 3/7, 8, 9, and 10, annexin V staining and cell cycle analysis by flow cytometry, respectively. It was observed that the compounds, 1-3 can promote ROS generation, cytochrome c release, and activation of caspases 3/7, caspase 8, caspase 9, and caspase 10 on MCF-7 cells. In addition, the compounds are shown to induce MCF-7 cell arrest at S-phase. Gene analysis via PCR array further clarified their effects by modulating the related genes upon the compounds' treatment. Further investigation on other breast cancer cells as well as in vivo studies on these compounds will further increase their potential as anti-breast cancer agents.
    Matched MeSH terms: Phosphines/pharmacology
  2. Ooi KK, Yeo CI, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Biol Inorg Chem, 2015 Jul;20(5):855-73.
    PMID: 26003312 DOI: 10.1007/s00775-015-1271-5
    The phosphanegold(I) carbonimidothioates, Ph3PAu{SC(OR)=NC6H4Me-4} for R = Me (1), Et (2) and iPr (3), feature linear P-Au-S coordination geometries and exhibit potent in vitro cytotoxicity against HT-29 colon cancer cells in both monolayer and multi-cellular spheroid models (e.g., IC50 = 11.9 ± 0.4 and 20.3 ± 0.3 μM for 2, respectively). Both intrinsic and extrinsic pathways of apoptosis are demonstrated by human apoptosis PCR array analysis, caspase activities, DNA fragmentation and cell apoptotic assays. Compounds 1-3 induce an extrinsic pathway that leads to down-regulation of NFκB. Compound 2 also exhibits an extrinsic apoptotic pathway involving the activation of both p53 and p73, whereas 3 activates p53 only. Lys48- and Lys63-linked polyubiquitination are also promoted by 1-3. Each of cytotoxic Ph3PAu{SC(OR)=NC6H4Me-4}, for R = Me (1), Et (2) and iPr (3), induce an intrinsic apoptotic pathway as well as an extrinsic pathway leading to down-regulation of NFκB. Lys48- and Lys63-linked polyubiquitination are promoted by 1-3 and these are able to inhibit cell invasion and to suppress the activity of TrxR.
    Matched MeSH terms: Phosphines/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links