Displaying all 7 publications

Abstract:
Sort:
  1. Mienda BS, Shamsir MS, Illias RM
    Comput Biol Chem, 2016 Apr;61:130-7.
    PMID: 26878126 DOI: 10.1016/j.compbiolchem.2016.01.013
    The metabolic role of 6-phosphogluconate dehydrogenase (gnd) under anaerobic conditions with respect to succinate production in Escherichia coli remained largely unspecified. Herein we report what are to our knowledge the first metabolic gene knockout of gnd to have increased succinic acid production using both glucose and glycerol substrates in E. coli. Guided by a genome scale metabolic model, we engineered the E. coli host metabolism to enhance anaerobic production of succinic acid by deleting the gnd gene, considering its location in the boundary of oxidative and non-oxidative pentose phosphate pathway. This strategy induced either the activation of malic enzyme, causing up-regulation of phosphoenolpyruvate carboxylase (ppc) and down regulation of phosphoenolpyruvate carboxykinase (ppck) and/or prevents the decarboxylation of 6 phosphogluconate to increase the pool of glyceraldehyde-3-phosphate (GAP) that is required for the formation of phosphoenolpyruvate (PEP). This approach produced a mutant strain BMS2 with succinic acid production titers of 0.35gl(-1) and 1.40gl(-1) from glucose and glycerol substrates respectively. This work further clearly elucidates and informs other studies that the gnd gene, is a novel deletion target for increasing succinate production in E. coli under anaerobic condition using glucose and glycerol carbon sources. The knowledge gained in this study would help in E. coli and other microbial strains development for increasing succinate production and/or other industrial chemicals.
    Matched MeSH terms: Phosphoenolpyruvate; Phosphoenolpyruvate Carboxylase
  2. Mienda BS, Shamsir MS
    J Biomol Struct Dyn, 2015;33(11):2380-9.
    PMID: 25921851 DOI: 10.1080/07391102.2015.1036461
    Systems metabolic engineering and in silico analyses are necessary to study gene knockout candidate for enhanced succinic acid production by Escherichia coli. Metabolically engineered E. coli has been reported to produce succinate from glucose and glycerol. However, investigation on in silico deletion of ptsG/b1101 gene in E. coli from glycerol using minimization of metabolic adjustment algorithm with the OptFlux software platform has not yet been elucidated. Herein we report what is to our knowledge the first direct predicted increase in succinate production following in silico deletion of the ptsG gene in E. coli GEM from glycerol with the OptFlux software platform. The result indicates that the deletion of this gene in E. coli GEM predicts increased succinate production that is 20% higher than the wild-type control model. Hence, the mutant model maintained a growth rate that is 77% of the wild-type parent model. It was established that knocking out of the ptsG/b1101 gene in E. coli using glucose as substrate enhanced succinate production, but the exact mechanism of this effect is still obscure. This study informs other studies that the deletion of ptsG/b1101 gene in E. coli GEM predicted increased succinate production, enabling a model-driven experimental inquiry and/or novel biological discovery on the underground metabolic role of this gene in E. coli central metabolism in relation to increasing succinate production when glycerol is the substrate.
    Matched MeSH terms: Phosphoenolpyruvate Sugar Phosphotransferase System
  3. Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, et al.
    Lipids, 2019 06;54(6-7):369-379.
    PMID: 31124166 DOI: 10.1002/lipd.12154
    Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
  4. Chia YY, Liong SY, Ton SH, Kadir KB
    Eur J Pharmacol, 2012 Feb 29;677(1-3):197-202.
    PMID: 22227336 DOI: 10.1016/j.ejphar.2011.12.037
    The activities of phosphoenolpyruvate carboxykinase (PEPCK) are influenced by active glucocorticoids which are activated by 11-β-hydroxysteroid dehydrogenase 1 (11β-HSD1) while hexose-6-phosphate dehydrogenase (H6PDH) influences the activities of 11-βHSD1 in a cofactor manner. Dysregulation of PEPCK and H6PDH has been associated with the pathogenesis of metabolic syndrome. Sixteen male Sprague Dawley rats, fed ad libitum, were assigned to two groups, control and treated, with the treated group being given GA at 100mg/kg for one week. Blood and subcutaneous and visceral adipose tissue, abdominal and quadriceps femoris muscle, liver and kidney were examined. GA treatment led to an overall significant decrease in blood glucose while HOMA-IR. PEPCK activities decreased in the liver but increased in the visceral adipose tissue. H6PDH activities also decreased significantly in the liver while 11β-HSD1 activities decreased significantly in all studied tissues except for subcutaneous adipose tissue. Adipocytes in the subcutaneous and visceral depots showed a reduction in size. Though increased glycogen storage was seen in the liver, no changes were observed in the kidneys and muscles. Results from this study may imply that GA could counteract the development of type 2 diabetes mellitus by improving insulin sensitivity and probably by reduction of H6PDH, 11β-HSD1 and a selective decrease in PEPCK activities.
  5. Azahar MA, Al-Naqeb G, Hasan M, Adam A
    Asian Pac J Trop Med, 2012 Nov;5(11):875-81.
    PMID: 23146801 DOI: 10.1016/S1995-7645(12)60163-1
    OBJECTIVE: To investigate the hypoglycemic effect of the aqueous extract of Octomeles sumatrana (O. sumatrana) (OS) in streptozotocin-induced diabetic rats (STZ) and its molecular mechanisms.

    METHODS: Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in to male Sprague-Dawley rats. Rats were divided into six different groups; normal control rats were not induced with STZ and served as reference, STZ diabetic control rats were given normal saline. Three groups were treated with OS aqueous extract at 0.2, 0.3 and 0.5 g/kg, orally twice daily continuously for 21 d. The fifth group was treated with glibenclamide (6 mg/kg) in aqueous solution orally continuously for 21 d. After completion of the treatment period, biochemical parameters and expression levels of glucose transporter 2 (Slc2a2), glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PCK1) were determined in liver by quantitative real time PCR.

    RESULTS: Administration of OS at different doses to STZ induced diabetic rats, resulted in significant decrease (P<0.05) in blood glucose level in a dose dependent manner by 36%, 48%, and 64% at doses of 0.2, 0.3 and 0.5 g/kg, respectively, in comparison to the STZ control values. Treatment with OS elicited an increase in the expression level of Slc2a2 gene but reduced the expression of G6Pase and PCK1 genes. Morefore, OS treated rats, showed significantly lower levels of serum alanine transaminase (ALT), aspartate aminotransferase (AST) and urea levels compared to STZ untreated rats. The extract at different doses elicited signs of recovery in body weight gain when compared to STZ diabetic controls although food and water consumption were significantly lower in treated groups compared to STZ diabetic control group.

    CONCLUSIONS: O. sumatrana aqueous extract is beneficial for improvement of hyperglycemia by increasing gene expression of liver Slc2a2 and reducing expression of G6Pase and PCK1 genes in streptozotocin-induced diabetic rats.

  6. Imam MU, Ismail M
    Mol Nutr Food Res, 2013 Mar;57(3):401-11.
    PMID: 23307605 DOI: 10.1002/mnfr.201200429
    SCOPE: Chronic sustained hyperglycemia underlies the symptomatology and complications of type 2 diabetes mellitus, and dietary components contribute to it. Germinated brown rice (GBR) improves glycemic control but the mechanisms involved are still the subject of debate. We now show one mechanism by which GBR lowers blood glucose.

    METHODS AND RESULTS: Effects of GBR, brown rice, and white rice (WR) on fasting plasma glucose and selected genes were studied in type 2 diabetic rats. GBR reduced plasma glucose and weight more than metformin, while WR worsened glycemia over 4 weeks of intervention. Through nutrigenomic suppression, GBR downregulated gluconeogenic genes (Fbp1 and Pck1) in a manner similar to, but more potently than, metformin, while WR upregulated the same genes. Bioactives (gamma-amino butyric acid, acylated steryl glycoside, oryzanol, and phenolics) were involved in GBR's downregulation of both genes. Plasma glucose, Fbp1 and Pck1 changes significantly affected the weight of rats (p = 0.0001).

    CONCLUSION: The fact that GBR downregulates gluconeogenic genes similar to metformin, but produces better glycemic control in type 2 diabetic rats, suggests other mechanisms are involved in GBR's antihyperglycemic properties. GBR as a staple could potentially provide enhanced glycemic control in type 2 diabetes mellitus better than metformin.

  7. Bhattamisra SK, Koh HM, Lim SY, Choudhury H, Pandey M
    Biomolecules, 2021 02 20;11(2).
    PMID: 33672590 DOI: 10.3390/biom11020323
    Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords "Catalpol", "Type 1 diabetes mellitus", "Type 2 diabetes mellitus", and "diabetic complications". Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.
    Matched MeSH terms: Phosphoenolpyruvate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links