Poplar trees rapidly yield wood and are therefore suitable as a biofuel feedstock; however, the quality of poplar is modest, and the profitability of poplar cultivation depends on the efficiency of the harvesting process. This study offers a simple and sustainable technique to harvest lignocellulosic resources from poplar for bioethanol production. The proposed two-step pretreatment method increased the surface lignin content and decreased the surface polysaccharide content. The cellulose content increased to 54.9% and the xylan content decreased to 6.7% at 5% AC. The cellulose yield of poplar residues (Populus L.) reached 65.5% by this two-step acetic acid (AC) and sodium sulphite (SS) treatment method. Two-step pretreatment using 5% AC and 4% SS obtained a recovery of nearly 80% of the total available fermentable sugar. The surface characterization showed a higher porosity in treated samples, which improved their hydrolysability. This method decreased the amount of lignin in plant biomass, making it applicable for further wood resource recovery or waste recycling for biorefinery purposes at very low costs.
This work aimed to study an integrated pretreatment technology employing p-toluenesulfonic acid (TsOH)-catalyzed liquid hot water (LHW) and short-time ball milling for the complete conversion of poplar biomass to xylooligosaccharides (XOS), glucose, and native-like lignin. The optimized TsOH-catalyzed LHW pretreatment solubilized 98.5% of hemicellulose at 160 °C for 40 min, releasing 49.8% XOS. Moreover, subsequent ball milling (20 min) maximized the enzymatic hydrolysis of cellulose from 65.8% to 96.5%, owing to the reduced particle sizes and cellulose crystallinity index. The combined pretreatment reduced the crystallinity by 70.9% while enlarging the average pore size and pore volume of the substrate by 29.5% and 52.4%, respectively. The residual lignin after enzymatic hydrolysis was rich in β-O-4 linkages (55.7/100 Ar) with less condensed structures. This lignin exhibited excellent antioxidant activity (RSI of 66.22) and ultraviolet absorbance. Thus, this research suggested a sustainable waste-free biorefinery for the holistic valorization of biomass through two-step biomass fractionation.
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus.