Displaying all 10 publications

Abstract:
Sort:
  1. Dulyayangkul P, Wan Nur Ismah WAK, Douglas EJA, Avison MB
    Antimicrob Agents Chemother, 2020 06 23;64(7).
    PMID: 32312773 DOI: 10.1128/AAC.02208-19
    Meropenem-vaborbactam resistance in Klebsiella pneumoniae isolates is associated with loss-of-function mutations in the OmpK35 and OmpK36 porins. We identify two previously unknown loss-of-function mutations that confer cefuroxime resistance in K. pneumoniae isolates. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor that controls capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem-vaborbactam in a KPC-3-producing K. pneumoniae isolate.
    Matched MeSH terms: Porins
  2. Palasubramaniam S, Karunakaran R, Gin GG, Muniandy S, Parasakthi N
    Int J Infect Dis, 2007 Sep;11(5):472-4.
    PMID: 17337225
    Matched MeSH terms: Porins/deficiency*; Porins/genetics; Porins/immunology
  3. Nadzirin N, Gardiner EJ, Willett P, Artymiuk PJ, Firdaus-Raih M
    Nucleic Acids Res, 2012 Jul;40(Web Server issue):W380-6.
    PMID: 22573174 DOI: 10.1093/nar/gks401
    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/ while ASSAM can be accessed at http://mfrlab.org/grafss/assam/.
    Matched MeSH terms: Porins/chemistry
  4. Letchumanan V, Chan KG, Lee LH
    Front Microbiol, 2014;5:705.
    PMID: 25566219 DOI: 10.3389/fmicb.2014.00705
    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.
    Matched MeSH terms: Porins
  5. Lau MY, Teng FE, Chua KH, Ponnampalavanar S, Chong CW, Abdul Jabar K, et al.
    Pathogens, 2021 Mar 02;10(3).
    PMID: 33801250 DOI: 10.3390/pathogens10030279
    The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great concern, as carbapenems are the last-line therapy for multidrug-resistant Gram-negative bacteria infections. This study aims to report the epidemiology of CRKP in a teaching hospital in Malaysia based on the molecular genotypic and clinical characteristics of the isolates. Sixty-three CRKP strains were isolated from a tertiary teaching hospital from January 2016 until August 2017. Carbapenemase genes were detected in 55 isolates, with blaOXA-48 (63.5%) as the predominant carbapenemase gene, followed by blaNDM (36.5%). At least one porin loss was detected in nine isolates. Overall, 63 isolates were divided into 30 clusters at similarity of 80% with PFGE analysis. Statistical analysis showed that in-hospital mortality was significantly associated with the usage of central venous catheter, infection or colonization by CRKP, particularly NDM-producers. In comparison, survival analysis using Cox proportional hazards regression identified a higher hazard ratio for patients with a stoma and patients treated with imipenem but a lower hazard ratio for patients with NDM-producing CRKP. OXA-48 carbapenemase gene was the predominant carbapenemase gene in this study. As CRKP infection could lead to a high rate of in-hospital mortality, early detection of the isolates was important to reduce their dissemination.
    Matched MeSH terms: Porins
  6. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T, Heesom KJ, et al.
    J Antimicrob Chemother, 2018 Jan 01;73(1):88-94.
    PMID: 29029194 DOI: 10.1093/jac/dkx345
    Objectives: In Klebsiella pneumoniae, overproduction of RamA results in reduced envelope permeability and reduced antimicrobial susceptibility but clinically relevant resistance is rarely observed. Here we have tested whether RamA overproduction can enhance acquired β-lactam resistance mechanisms in K. pneumoniae and have defined the envelope protein abundance changes upon RamA overproduction during growth in low and high osmolarity media.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. β-Lactam susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and transcript levels were quantified using real-time RT-PCR.

    Results: RamA overproduction enhanced β-lactamase-mediated β-lactam resistance, in some cases dramatically, without altering β-lactamase production. It increased production of efflux pumps and decreased OmpK35 porin production, though micF overexpression showed that OmpK35 reduction has little impact on envelope permeability. A survey of K. pneumoniae bloodstream isolates revealed ramA hyperexpression in 3 of 4 carbapenemase producers, 1 of 21 CTX-M producers and 2 of 19 strains not carrying CTX-M or carbapenemases.

    Conclusions: Whilst RamA is not a key mediator of antibiotic resistance in K. pneumoniae on its own, it is potentially important for enhancing the spectrum of acquired β-lactamase-mediated β-lactam resistance. LC-MS/MS proteomics analysis has revealed that this enhancement is achieved predominantly through activation of efflux pump production.

    Matched MeSH terms: Porins/biosynthesis*
  7. Jiménez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown J, Isaac SG, et al.
    J Antimicrob Chemother, 2016 Jul;71(7):1820-5.
    PMID: 27029850 DOI: 10.1093/jac/dkw088
    OBJECTIVES: In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae.

    METHODS: Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR.

    RESULTS: Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific.

    CONCLUSIONS: RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates.

    Matched MeSH terms: Porins/metabolism
  8. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

    Matched MeSH terms: Porins/genetics
  9. Palasubramaniam S, Muniandy S, Navaratnam P
    J Microbiol Immunol Infect, 2009 Apr;42(2):129-33.
    PMID: 19597644
    In addition to beta-lactamase production, loss of porins confers resistance to extended-spectrum beta-lactams in Klebsiella pneumoniae and Escherichia coli infection. This study describes the detection of SHV-12 extended-spectrum beta-lactamase (ESBL) subtype and the loss of OmpK35 porin in 4 strains of K. pneumoniae and E. coli.
    Matched MeSH terms: Porins/genetics*
  10. Palasubramaniam S, Subramaniam G, Muniandy S, Parasakthi N
    Microb Drug Resist, 2007;13(3):186-90.
    PMID: 17949305
    In this report, we describe the detection of AmpC and CMY-2 beta-lactamases with the loss of OmpK35 porin among seven sporadic strains of ceftazidime-resistant Klebsiella pneumoniae and ceftazidime-resistant Escherichia coli. Cefoxitin, which was used as a marker of resistance toward 7-alpha-methoxy-cephalosporins, exhibited high minimum inhibitory concentration (MIC) values ranging between 128 microg/ml and >256 microg/ml in all the strains. The presence of hyperproducing AmpC enzymes was indicated by the positive three-dimensional test. Isoelectric focusing (IEF) study confirmed the presence of AmpC enzymes in all the strains. The ampC gene was detected by PCR in all the strains and confirmed by DNA sequencing. Large plasmids in all the strains, ranging from 60 kb to 150 kb in size, most likely encode the ampC gene. Two E. coli strains out of the seven strains showed positive amplification of the bla(CMY-2) gene, an AmpC variant, and was confirmed by DNA sequence analyses. DNA hybridization confirmed the bla(CMY-2) gene to be plasmid-mediated in both of these strains. However, one of these two strains also mediated a chromosomal CMY gene. All the strains showed an absence of OmpK35 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS/PAGE) and was confirmed by western blot analyses using raised polyclonal anti-OmpK35 antiserum. This suggests that, apart from CMY production, absence of OmpK35 porin also contributed to cefoxitin resistance resulting in extended-spectrum beta-lactam resistance among these isolates.
    Matched MeSH terms: Porins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links