MATERIALS AND METHODS: Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels.
RESULTS: In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p
OBJECTIVE: To identify biological pathways that contribute to risk for bipolar disorder (BP) using genes with consistent evidence for association in multiple genome-wide association studies (GWAS).
DATA SOURCES: Four independent data sets with individual genome-wide data available in July 2011 along with all data sets contributed to the Psychiatric Genomics Consortium Bipolar Group by May 2012. A prior meta-analysis was used as a source for brain gene expression data.
STUDY SELECTION: The 4 published GWAS were included in the initial sample. All independent BP data sets providing genome-wide data in the Psychiatric Genomics Consortium were included as a replication sample.
DATA EXTRACTION AND SYNTHESIS: We identified 966 genes that contained 2 or more variants associated with BP at P cortex.
MAIN OUTCOMES AND MEASURES: Empirically significant genes and biological pathways. RESULTS Among 966 genes, 226 were empirically significant (P cortex in patients with BP: CACNA1C, DTNA, FOXP1, GNG2, ITPR2, LSAMP, NPAS3, NCOA2, and NTRK3.
CONCLUSIONS AND RELEVANCE: Pathways involved in the genetic predisposition to BP include hormonal regulation, calcium channels, second messenger systems, and glutamate signaling. Gene expression studies implicate neuronal development pathways as well. These results tend to reinforce specific hypotheses regarding BP neurobiology and may provide clues for new approaches to treatment and prevention.