AIM OF THIS REVIEW: This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application.
MATERIALS AND METHODS: The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science).
RESULTS: This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, anti-inflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement.
CONCLUSIONS: LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.
METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.
RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.
CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.