Displaying all 3 publications

Abstract:
Sort:
  1. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Jun;138:124-30.
    PMID: 23612170 DOI: 10.1016/j.biortech.2013.03.179
    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.
    Matched MeSH terms: Prunus/chemistry
  2. Lasekan O, Abbas K
    Food Chem Toxicol, 2010 Aug-Sep;48(8-9):2212-6.
    PMID: 20510332 DOI: 10.1016/j.fct.2010.05.050
    Considering the importance of tropical almond nuts as a snack item, a study was conducted to identify the flavour volatiles and acrylamide generated during the roasting of the nuts. The supercritical fluid extracted flavour components revealed 74 aroma active compounds made up of 27 hydrocarbons, 12 aldehydes, 11 ketones, 7 acids, 4 esters, 3 alcohols, 5 furan derivatives a pyrazine, and 2 unknown compounds. While low levels of acrylamide (8-86 microg/kg) were obtained in the roasted nuts, significant (P<0.05) increases occurred in concentration with increased roasting temperature and time. Carboxylic acids were the most abundant volatiles in the roasted almond nuts and less significant (P>0.05) concentration of acrylamide was generated with mild roasting and shorter roasting period.
    Matched MeSH terms: Prunus/chemistry*
  3. Mahmood T, Anwar F, Abbas M, Boyce MC, Saari N
    Int J Mol Sci, 2012;13(2):1380-1392.
    PMID: 22408396 DOI: 10.3390/ijms13021380
    Selected soluble sugars and organic acids were analyzed in strawberry, sweet cherry, and mulberry fruits at different ripening stages by HPLC. The amounts of fructose, glucose and sucrose were found to be: strawberry (1.79-2.86, 1.79-2.25 and 0.01-0.25 g/100 g FW), sweet cherry (0.76-2.35, 0.22-3.39 and 0.03-0.13 g/100 g) and mulberry (3.07-9.41, 1.53-4.95 and 0.01-0.25 g/100 g) at un-ripened to fully-ripened stages, respectively. The strawberry, sweet cherry and mulberry mainly contained tartaric, citric and ascorbic acids in the range of 16-55, 70-1934 and 11-132 mg/100 g; 2-8, 2-10 and 10-17 mg/100 g; 2-118, 139-987 and 2-305 mg/100 g at un-ripened to fully-ripened stages, respectively. Fructose and glucose were established to be the major sugars in all the tested fruit while citric and ascorbic acid were the predominant organic acids in strawberry and mulberry while tartaric acid was mainly present in sweet cherry. The tested fruits mostly showed an increase in the concentration of sugars and organic acids with ripening.
    Matched MeSH terms: Prunus/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links