Displaying all 6 publications

Abstract:
Sort:
  1. Zhu J, Zhang B, Tan C, Huang Q
    Food Funct, 2019 Sep 13.
    PMID: 31517355 DOI: 10.1039/c9fo01333d
    The present study aims to investigate the relationship between in silico experimental data and in vitro inhibitory data of polyphenols against α-glucosidase. The CDOCKER protocol in Discovery Studio was used to dock various polyphenols to the Saccharomyces cerevisiae α-glucosidase crystal structure. -CDOCKER energy values and the energy gap between the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy were used to study its consistency with in vitro inhibitory data. The results showed that the correlation trend was trustworthy regardless of the data deviation and low correlation coefficient. Despite slight disagreements with some specific polyphenols, the docking data generally explained the effect of the groups (-OH, glycosyl, galloyl, and caffeoyl). The docking results showed that compound 7, a quercetin derivative, can be recommended as a lead antidiabetic compound, with additional anti-obesity effects. Galloyl and caffeoyl moieties are favorable to develop novel αG inhibitors.
    Matched MeSH terms: Rumex
  2. Safdar ME, Wang X, Abbas M, Ozaslan C, Asif M, Adnan M, et al.
    PLoS One, 2021;16(11):e0258920.
    PMID: 34739485 DOI: 10.1371/journal.pone.0258920
    Weed infestation is a persistent problem for centuries and continues to be major yield reducing issue in modern agriculture. Chemical weed control through herbicides results in numerous ecological, environmental, and health-related issues. Moreover, numerous herbicides have evolved resistance against available herbicides. Plant extracts are regarded as an alternative to herbicides and a good weed management option. The use of plant extracts is environmentally safe and could solve the problem of herbicide resistance. Therefore, laboratory and wire house experiments were conducted to evaluate the phytotoxic potential of three Fabaceae species, i.e., Cassia occidentalis L. (Coffee senna), Sesbania sesban (L.) Merr. (Common sesban) and Melilotus alba Medik. (White sweetclover) against seed germination and seedling growth of some broadleaved weed species. Firstly, N-hexane and aqueous extracts of these species were assessed for their phytotoxic effect against lettuce (Lactuca sativa L.). The extracts found more potent were further tested against germination and seedling growth of four broadleaved weed species, i.e., Parthenium hysterophorus L. (Santa-Maria), Trianthema portulacastrum L. (Pigweed), Melilotus indica L (Indian sweetclover). and Rumex dentatus L. (Toothed dock) in Petri dish and pot experiments. Aqueous extracts of all species were more toxic than their N-hexane forms for seed germination and seedling growth of lettuce; therefore, aqueous extracts were assessed for their phytotoxic potential against four broadleaved weed species. Aqueous extracts of all species proved phytotoxic against T. portulacastrum, P. hysterophorus, M. indica and R. dentatus and retarder their germination by 57, 90, 100 and 58%, respectively. Nevertheless, foliar spray of C. occidentalis extract was the most effective against T. portulacastrum as it reduced its dry biomass by 72%, while M. alba was effective against P. hysterophorus, R. dentatus and M. indica and reduced their dry biomass by 55, 68 and 81%, respectively. It is concluded that aqueous extracts of M. alba, S. sesban and C. occidentalis could be used to retard seed germination of T. portulacastrum, P. hysterophorus, M. indica and R. dentatus. Similarly, aqueous extracts of C. occidentalis can be used to suppress dry biomass of T. portulacastrum, and those of M. alba against P. hysterophorus, R. dentatus. However, use of these extracts needs their thorough testing under field conditions.
    Matched MeSH terms: Rumex/metabolism; Rumex/chemistry
  3. Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, et al.
    Drug Dev Res, 2020 05;81(3):315-328.
    PMID: 31782209 DOI: 10.1002/ddr.21623
    A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
    Matched MeSH terms: Rumex
  4. Sanmugavelan R, Teoh TC, Roslan N, Mohamed Z
    Turk J Biol, 2018;42(3):213-223.
    PMID: 30814883 DOI: 10.3906/biy-1710-107
    In this study, transformation of BrCHS var 2 into B. rotunda cell suspension culture, followed by chalcone synthase enzymatic assay and HPLC analysis was conducted to investigate whether the substrate specificity for BrCHS var 2 is either cinnamoyl-CoA or p-coumaroyl-CoA. The HPLC profile showed an increase in the amount of pinocembrin chalcone when cinnamoyl-CoA and malonyl-CoA were added but not p-coumaroyl-CoA. Molecular docking was performed to explore the binding of cinnamoyl-CoA and p-coumaroyl-CoA to BrCHS var 2 receptor and the docking results showed that cinnamoyl-CoA formed numerous hydrogen bonds and more negative docked energy than p-coumaroyl-CoA. Cinnamoyl-CoA showed good interactions with Cys 164 to initiate the subsequent formation of pinocembrin chalcone, whereas the hydroxyl group of p-coumaroyl-CoA formed an unfavorable interaction with Gln 161 that caused steric hindrance to subsequent formation of naringenin chalcone. Docked conformation analysis results also showed that malonyl-CoA formed hydrogen bonding with Cys 164, His 303, and Asn 336 residues in BrCHS var 2. The results show that cinnamoyl-CoA is the preferred substrate for BrCHS var 2.
    Matched MeSH terms: Rumex
  5. Sivasothy Y, Leong KH, Loo KY, Adbul Wahab SM, Othman MA, Awang K
    Nat Prod Res, 2021 Feb 16.
    PMID: 33593208 DOI: 10.1080/14786419.2021.1885405
    The use of antidiabetic agents which control glycemic levels in the blood and simultaneously inhibit oxidative stress is an important strategy in the prevention of Diabetes Mellitus and its complications. In our previous study, malabaricone C (3) and its dimer, giganteone A (5) exhibited significant DPPH free radical scavenging activities which were lower than the activity of the positive control, ascorbic acid. These compounds were evaluated for their α-glucosidase inhibitory activities at different concentrations (0.02-2.5 mM) in the present study. Compounds 3 (IC50 59.61 µM) and 5 (IC50 39.52 µM) were identified as active alpha-glucosidase inhibitors, each respectively being 24 and 37 folds more potent than the standard inhibitor, acarbose. Based on the molecular docking studies, compounds 3 and 5 docked into the active site of the α-glucosidase enzyme, forming mainly hydrogen bonds in the active site.
    Matched MeSH terms: Rumex
  6. Subramaniyan V, Shaik S, Bag A, Manavalan G, Chandiran S
    Pak J Pharm Sci, 2018 Mar;31(2):509-516.
    PMID: 29618442
    To determine the ameliorative potential of the active fraction from different extracts of Rumex vesicarius against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats and its possible mechanism of action. Both sex wistar rats were divided into 6 groups (n=6/group) were fed with a control, potassium dichromate and gentamicin supplemented with different extracts at the doses of 200 and 400mg/kg respectively. Oral administration of EERV offered a significant (p<0.01 and p<0.001) dose dependent protection against PD and GN induced nephrotoxicity. Potassium dichromate and gentamicin nephrotoxicity assessed in terms of body weight, kidney weight, creatinine, urea, uric acid, BUN, albumin and total protein. Thus the present study revealed that EERV phytochemical constituents play an important role in protection against kidney damage.
    Matched MeSH terms: Rumex/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links