Displaying all 3 publications

Abstract:
Sort:
  1. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: SOXB1 Transcription Factors/genetics
  2. Abdul Rahman H, Manzor NF, Tan GC, Tan AE, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:57-8.
    PMID: 19024982
    Angiogenic induction was made to promote angiogenesis by differentiating stem cells towards endothelial cells. However, the stemness property of induced cells has not been revealed yet. Hence, we aim to evaluate the differential mRNA expression of stemness genes in human chorion-derived stem cells (CDSC) after being cultured in EDM50 comprised bFGF and VEGF. Results indicated that CDSC cultured in EMD50 expressed significantly higher mRNA level of Sox-2, FZD9, BST-1 and Nestin. In addition Oct-4, FGF-4 and ABCG-2 were also upregulated. Our finding suggested that CDSC after angiogenic induction enhanced its stem cell properties. This could be contributed for the mechanism of stem cell therapy in ischemic problem.
    Matched MeSH terms: SOXB1 Transcription Factors/genetics*
  3. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
    Matched MeSH terms: SOXB1 Transcription Factors/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links