Displaying all 11 publications

Abstract:
Sort:
  1. Choong PF, Teh HX, Teoh HK, Ong HK, Choo KB, Sugii S, et al.
    Int J Med Sci, 2014;11(11):1154-60.
    PMID: 25170299 DOI: 10.7150/ijms.8281
    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.
    Matched MeSH terms: Octamer Transcription Factor-3/genetics; Octamer Transcription Factor-3/metabolism
  2. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Octamer Transcription Factor-3/genetics; Octamer Transcription Factor-3/metabolism
  3. Jafari S, Hosseini MS, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al.
    Mol. Reprod. Dev., 2011 Aug;78(8):576-84.
    PMID: 21721066 DOI: 10.1002/mrd.21344
    In this study, fibroblast cells were stably transfected with mouse POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) to investigate the effect of S-adenosylhomocysteine (SAH), the reversible non-toxic inhibitor of DNA-methyltransferases (DNMTs), at different intervals post-fusion on in vitro development of cloned bovine embryos. Treatment with SAH for 12 hr resulted in 54.6 ± 7.7% blastocyst production, which was significantly greater than in vitro fertilized embryos (IVF: 37.2 ± 2.7%), cloned embryos treated with SAH for 72 hr (31.0 ± 7.6%), and control cloned embryos (34.6 ± 3.6%). The fluorescence intensities of the EGFP-POU5F1 reporter gene at all intervals of SAH treatment, except of 72 hr, were significantly higher than control somatic cell nuclear transfers (SCNT) embryos. The intensity of DNA-methylation in cloned embryos treated with SAH for 48 hr was similar to that of IVF embryos, and was significantly lower than the other SCNT groups. The levels of H3K9 acetylation in all SCNT groups were significantly lower than IVF embryos. Real-time PCR analysis of gene expression revealed significantly higher expression of POU5F1 in cloned versus IVF blastocysts. Neither embryo production method (SCNT vs. IVF) nor the SAH treatment interval affected expression of the BCL2 gene. Cloned embryos at all intervals of SAH treatment, except for 24 hr, had significantly increased VEGF transcript compared to IVF and control SCNT embryos. It was suggested that the time interval of DNMT inhibition may have important consequences on different in vitro features of bovine SCNT, and the improving effects of DNMT inhibition on developmental competency of cloned embryos are restricted to a specific period of time preceding de novo methylation.
    Matched MeSH terms: Octamer Transcription Factor-3/genetics; Octamer Transcription Factor-3/metabolism
  4. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
    Matched MeSH terms: Octamer Transcription Factor-3/genetics; Octamer Transcription Factor-3/metabolism
  5. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
    Matched MeSH terms: Octamer Transcription Factor-3/metabolism
  6. Jafari S, Hosseini SM, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al.
    J Assist Reprod Genet, 2011 Nov;28(11):1119-27.
    PMID: 22020531 DOI: 10.1007/s10815-011-9638-1
    To investigate the effect of epigenetic modification on pattern, time and capacity of transcription activation of POU5F1, the key marker of pluripotency, in cloned bovine embryos.
    Matched MeSH terms: Octamer Transcription Factor-3/genetics*
  7. Harun MH, Sepian SN, Chua KH, Ropilah AR, Abd Ghafar N, Che-Hamzah J, et al.
    Hum. Cell, 2013 Mar;26(1):35-40.
    PMID: 21748521 DOI: 10.1007/s13577-011-0025-0
    The anterior surface of the eye is covered by several physically contiguous but histologically distinguishable epithelia overlying the cornea, limbus, bulbar conjunctiva, fornix conjunctiva, and palpebral conjunctiva. The self-renewing nature of the conjunctival epithelia makes their long-term survival ultimately dependent on small populations of stem cells. Hence, the objective of this study was to investigate the expression of the stem cell genes Sox2, OCT4, NANOG, Rex1, NES, and ABCG2 in cultured human conjunctival epithelium from different conjunctival zones, namely, the bulbar, palpebral and fornix zones. Three samples were taken from patients with primary pterygium and cataract (age range 56-66 years) who presented to our eye clinic at the UKM Medical Centre. The eye was examined with slit lamp to ensure there was no underlying ocular surface diseases and glaucoma. Conjunctival tissue was taken from patients who underwent a standard cataract or pterygium operation as a primary procedure. Tissues were digested, cultured, and propagated until an adequate number of cells was obtained. Total RNA was extracted and subjected to expression analysis of conjunctival epithelium genes (KRT4, KRT13, KRT19) and stem cell genes (Sox2, OCT4, NANOG, Rex1, NES, ABCG2) by reverse transcriptase-PCR and 2% agarose gel electrophoresis. The expression of Sox2, OCT4, and NANOG genes were detected in the fornical cells, while bulbar cells only expressed Sox2 and palpebral cells only expressed OCT4. Based on these results, the human forniceal region expresses a higher number of stem cell genes than the palpebral and bulbar conjunctiva.
    Study site: Eye clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: Octamer Transcription Factor-3
  8. Verusingam ND, Yeap SK, Ky H, Paterson IC, Khoo SP, Cheong SK, et al.
    PeerJ, 2017;5:e3174.
    PMID: 28417059 DOI: 10.7717/peerj.3174
    Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs), reprogramming Oral Squamous Cell Carcinoma (OSCC) to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs) like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR), immunofluorescence staining, embryoid bodies (EB) formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103) exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376) did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60) and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.
    Matched MeSH terms: Octamer Transcription Factor-3
  9. Abdul Rahman H, Manzor NF, Tan GC, Tan AE, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:57-8.
    PMID: 19024982
    Angiogenic induction was made to promote angiogenesis by differentiating stem cells towards endothelial cells. However, the stemness property of induced cells has not been revealed yet. Hence, we aim to evaluate the differential mRNA expression of stemness genes in human chorion-derived stem cells (CDSC) after being cultured in EDM50 comprised bFGF and VEGF. Results indicated that CDSC cultured in EMD50 expressed significantly higher mRNA level of Sox-2, FZD9, BST-1 and Nestin. In addition Oct-4, FGF-4 and ABCG-2 were also upregulated. Our finding suggested that CDSC after angiogenic induction enhanced its stem cell properties. This could be contributed for the mechanism of stem cell therapy in ischemic problem.
    Matched MeSH terms: Octamer Transcription Factor-3/genetics*
  10. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al.
    In Vitro Cell Dev Biol Anim, 2012 Feb;48(2):75-83.
    PMID: 22274909 DOI: 10.1007/s11626-011-9480-x
    Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
    Matched MeSH terms: Octamer Transcription Factor-3/biosynthesis
  11. Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, et al.
    Epigenetics Chromatin, 2019 12 12;12(1):73.
    PMID: 31831052 DOI: 10.1186/s13072-019-0320-7
    BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells.

    RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2.

    CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.

    Matched MeSH terms: Octamer Transcription Factor-3/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links