Displaying all 9 publications

Abstract:
Sort:
  1. Lau YL, Chang PY, Subramaniam V, Ng YH, Mahmud R, Ahmad AF, et al.
    Parasit Vectors, 2013 Sep 09;6(1):257.
    PMID: 24010903 DOI: 10.1186/1756-3305-6-257
    BACKGROUND: Sarcocystis species are protozoan parasites with a wide host range including snakes. Although there were several reports of Sarcocytis species in snakes, their distribution and prevalence are still not fully explored.

    METHODS: In this study, fecal specimens of several snake species in Malaysia were examined for the presence of Sarcocystis by PCR of 18S rDNA sequence. Microscopy examination of the fecal specimens for sporocysts was not carried as it was difficult to determine the species of the infecting Sarcocystis.

    RESULTS: Of the 28 snake fecal specimens, 7 were positive by PCR. BLASTn and phylogenetic analyses of the amplified 18S rDNA sequences revealed the snakes were infected with either S. nesbitti, S. singaporensis, S. zuoi or undefined Sarcocystis species.

    CONCLUSION: This study is the first to report Sarcocystis infection in a cobra, and S. nesbitti in a reticulated python.

    Matched MeSH terms: Sarcocystis/genetics*
  2. Abe N, Matsubara K, Tamukai K, Miwa Y, Takami K
    Parasitol Res, 2015 Aug;114(8):3175-9.
    PMID: 26044884 DOI: 10.1007/s00436-015-4564-2
    Sarcocystis nesbitti, using snakes as the definitive host, is a causative agent of acute human muscular sarcocystosis in Malaysia. Therefore, it is important to explore the distribution and prevalence of S. nesbitti in snakes. Nevertheless, epizootiological information of S. nesbitti in snakes remains insufficient because few surveys have assessed Sarcocystis infection in snakes in endemic countries. In Japan, snakes are popular exotic pet animals that are imported from overseas, but the degree of Sarcocystis infection in them remains unclear. The possibility exists that muscular sarcocystosis by S. nesbitti occurs in contact with captive snakes in non-endemic countries. For a total of 125 snake faecal samples from 67 snake species collected at animal hospitals, pet shops and a zoo, this study investigated the presence of Sarcocystis using polymerase chain reaction (PCR) for the 18S ribosomal RNA gene (18S rDNA). Four (3.2%) faecal samples were positive by PCR. Phylogenetic analysis of the 18S rDNA sequences obtained from four amplification products revealed one isolate from a beauty snake (Elaphe taeniura), Sarcocystis zuoi, which uses rat snakes as the definitive host. The isolate from a Macklot's python (Liasis mackloti) was closely related with unidentified Sarcocystis sp. from reticulated pythons in Malaysia. The remaining two isolates from tree boas (Corallus spp.) were closely related with Sarcocystis lacertae, Sarcocystis gallotiae and unidentified Sarcocystis sp. from smooth snakes, Tenerife lizards and European shrews, respectively. This report is the first of a study examining the distribution of Sarcocystis species in captive snakes in Japan.
    Matched MeSH terms: Sarcocystis/genetics*
  3. Abubakar S, Teoh BT, Sam SS, Chang LY, Johari J, Hooi PS, et al.
    Emerg Infect Dis, 2013 Dec;19(12):1989-91.
    PMID: 24274071 DOI: 10.3201/eid1912.120530
    An outbreak of fever associated with myalgia and myositis occurred in 2012 among 89 of 92 college students and teachers who visited Pangkor Island, Malaysia. The Sarcocystis nesbitti 18S rRNA gene and sarcocysts were obtained from muscle tissues of 2 students. Our findings indicate emergence of S. nesbitti infections in humans in Malaysia.
    Matched MeSH terms: Sarcocystis/genetics
  4. Wassermann M, Raisch L, Lyons JA, Natusch DJD, Richter S, Wirth M, et al.
    PLoS One, 2017;12(11):e0187984.
    PMID: 29131856 DOI: 10.1371/journal.pone.0187984
    We examined Sarcocystis spp. in giant snakes from the Indo-Australian Archipelago and Australia using a combination of morphological (size of sporocyst) and molecular analyses. We amplified by PCR nuclear 18S rDNA from single sporocysts in order to detect mixed infections and unequivocally assign the retrieved sequences to the corresponding parasite stage. Sarcocystis infection was generally high across the study area, with 78 (68%) of 115 examined pythons being infected by one or more Sarcocystis spp. Among 18 randomly chosen, sporocyst-positive samples (11 from Southeast Asia, 7 from Northern Australia) the only Sarcocystis species detected in Southeast Asian snakes was S. singaporensis (in reticulated pythons), which was absent from all Australian samples. We distinguished three different Sarcocystis spp. in the Australian sample set; two were excreted by scrub pythons and one by the spotted python. The sequence of the latter is an undescribed species phylogenetically related to S. lacertae. Of the two Sarcocystis species found in scrub pythons, one showed an 18S rRNA gene sequence similar to S. zamani, which is described from Australia for the first time. The second sequence was identical/similar to that of S. nesbitti, a known human pathogen that was held responsible for outbreaks of disease among tourists in Malaysia. The potential presence of S. nesbitti in Australia challenges the current hypothesis of a snake-primate life cycle, and would have implications for human health in the region. Further molecular and biological characterizations are required to confirm species identity and determine whether or not the Australian isolate has the same zoonotic potential as its Malaysian counterpart. Finally, the absence of S. nesbitti in samples from reticulated pythons (which were reported to be definitive hosts), coupled with our phylogenetic analyses, suggest that alternative snake hosts may be responsible for transmitting this parasite in Malaysia.
    Matched MeSH terms: Sarcocystis/genetics
  5. Kutty MK, Latif B, Muslim A, Hussaini J, Daher AM, Heo CC, et al.
    Trop Anim Health Prod, 2015 Apr;47(4):751-6.
    PMID: 25740651 DOI: 10.1007/s11250-015-0789-4
    A number of methods have been used for the detection of the presence of microsarcocysts in animals, but little information exists on the value between the various methods. This study therefore examined for Sarcocystis spp. using three different methods in 105 samples of skeletal muscle collected from goats slaughtered in an abattoir in Selangor, Malaysia from January to February 2014. Three methods were used, direct light microscopy of squashed fresh muscle tissues; histological examination of fixed, sectioned, and hematoxylin and eosin (H&E)-stained samples of muscle; and molecular identification by polymerase chain reaction (PCR). Of the 105 tissue samples, 55 (52.38 %) were positive by light microscopy (LM), 46 (43.8 %) by histology, and 95 (90.48 %) by PCR. Only 29 (27.6 %) and 5 (4.76 %) samples were positive and negative, respectively, by all three methods. The cysts were elongated to a spindle shape with a mean size of 393.30 × 81.6 μm and containing banana-shaped bradyzoites of size 12.32 × 2.08 μm. The wall of the cyst was radially striated with a thickness of 2.83 μm. Samples were tested for the presence of Sarcocystis-specific 18S rRNA and were identified as Sarcocystis capracanis. Of the three methods used, the PCR test appears to be the most useful method for the diagnosis of sarcocystosis especially for species identification.
    Matched MeSH terms: Sarcocystis/genetics
  6. Shahari S, Tengku-Idris TI, Fong MY, Lau YL
    Parasit Vectors, 2016 11 23;9(1):598.
    PMID: 27881179
    BACKGROUND: Sarcocystis are intracellular protozoan parasites that are characterised by their ability to invade muscle tissue and form intramuscular sarcocysts. A muscular sarcocystosis outbreak was reported by travellers returning from Tioman Island in 2011 and 2012 where Sarcocystis nesbitti was identified as the main cause. The source of the S. nesbitti that was involved has remained elusive, although water is hypothesised to be the main cause of transmission. A surveillance study was therefore undertaken in the northern regions of Tioman Island to identify the source of S. nesbitti by screening rivers, water tanks, wells and seawater.

    METHODS: Water samples were collected from rivers, water tanks, wells and seawater on Tioman Island over the course of April to October 2015. Water samples were indirectly screened for Sarcocystis species by obtaining sediment from respective water sources. PCR amplification of the 18S rRNA gene region was conducted to identify positive samples. Microscopy was used in an attempt to reappraise PCR results, but no sporocysts were detected in any of the samples.

    RESULTS: A total of 157 water samples were obtained and 19 were positive for various Sarcocystis species. Through BLASTn and phylogenetic analysis, these species were found to be S. singaporensis, S. nesbitti, Sarcocystis sp. YLL-2013 and one unidentified Sarcocystis species.

    CONCLUSIONS: This is the first positive finding of S. nesbitti in water samples on Tioman Island, which was found in a water tank and in river water samples. This finding supports the hypothesis that water was a potential medium for the transmission of S. nesbitti during the outbreak. This will potentially identify areas in which preventive measures can be taken to prevent future outbreaks.

    Matched MeSH terms: Sarcocystis/genetics
  7. Esposito DH, Stich A, Epelboin L, Malvy D, Han PV, Bottieau E, et al.
    Clin Infect Dis, 2014 Nov 15;59(10):1401-10.
    PMID: 25091309 DOI: 10.1093/cid/ciu622
    BACKGROUND: Through 2 international traveler-focused surveillance networks (GeoSentinel and TropNet), we identified and investigated a large outbreak of acute muscular sarcocystosis (AMS), a rarely reported zoonosis caused by a protozoan parasite of the genus Sarcocystis, associated with travel to Tioman Island, Malaysia, during 2011-2012.

    METHODS: Clinicians reporting patients with suspected AMS to GeoSentinel submitted demographic, clinical, itinerary, and exposure data. We defined a probable case as travel to Tioman Island after 1 March 2011, eosinophilia (>5%), clinical or laboratory-supported myositis, and negative trichinellosis serology. Case confirmation required histologic observation of sarcocysts or isolation of Sarcocystis species DNA from muscle biopsy.

    RESULTS: Sixty-eight patients met the case definition (62 probable and 6 confirmed). All but 2 resided in Europe; all were tourists and traveled mostly during the summer months. The most frequent symptoms reported were myalgia (100%), fatigue (91%), fever (82%), headache (59%), and arthralgia (29%); onset clustered during 2 distinct periods: "early" during the second and "late" during the sixth week after departure from the island. Blood eosinophilia and elevated serum creatinine phosphokinase (CPK) levels were observed beginning during the fifth week after departure. Sarcocystis nesbitti DNA was recovered from 1 muscle biopsy.

    CONCLUSIONS: Clinicians evaluating travelers returning ill from Malaysia with myalgia, with or without fever, should consider AMS, noting the apparent biphasic aspect of the disease, the later onset of elevated CPK and eosinophilia, and the possibility for relapses. The exact source of infection among travelers to Tioman Island remains unclear but needs to be determined to prevent future illnesses.

    Matched MeSH terms: Sarcocystis/genetics
  8. Latif B, Vellayan S, Heo CC, Kannan Kutty M, Omar E, Abdullah S, et al.
    Trop Biomed, 2013 Dec;30(4):699-705.
    PMID: 24522140 MyJurnal
    The prevalence of sarcocystosis in cattle and water buffaloes from peninsular Malaysia was investigated in abattoirs in Selangor state, February, 2011, to March, 2012. Fresh muscle samples were collected from the tongue, heart, oesophagus, diaphragm and skeletal muscles of 102 cattle and 18 water buffaloes. Each sample was initially screened by light microscopy and then fixed for further histopathological analysis. Out of 120 animals examined, 49 (40.8%) harboured the microscopic type of Sarcocystis spp. The positivity rate for cattle was 36.2% and for water buffaloes 66.7%. In cattle, the organs highly infected were the skeletal muscles and diaphragm (27% each), followed by tongue and esophagus (24.3% each), and the heart (8%). In water buffaloes, the heart was most often infected (66.7%), followed by the oesophagus (50%) and skeletal muscle (33.3%); no sarcocysts were detected in the tongue and diaphragm. The shape of the sarcocyst was fusiform to oval with a mean cyst size of 151.66 x 75.83 μm and wall thickness of 2.47 μm in cattle, and 114 x 50.81 μm cyst size and the wall thickness of 1.11 μm in water buffaloes, consistent with Sarcocystis cruzi and Sarcocystis levinei, respectively. Remaining tissue from cattle was subjected to parasite specific 18S rRNA gene PCR and Sarcocystis cruzi was confirmed, at least exemplarily. The peripheral metrocytes and the banana-shaped bradyzoites (15.23 x 2.2 μm in cattle and 11.49 x 2.45 μm in water buffalo hosts) were easily recognized. In conclusion, a high positivity rate was found in Malaysian meat-producing animals with possible implications for meat consumption and human health.
    Matched MeSH terms: Sarcocystis/genetics
  9. Latif B, Kannan Kutty M, Muslim A, Hussaini J, Omar E, Heo CC, et al.
    Trop Biomed, 2015 Sep;32(3):444-52.
    PMID: 26695204 MyJurnal
    One thousand and forty-five tissue samples of skeletal muscles, tongue, heart, diaphragm and esophagus were collected from 209 animals (43 sheep, 89 goats and 77 cattle) from an abattoir in Selangor between February and October, 2013. Each sample was divided into three pieces with each piece measuring 2-3 mm3. Each piece was then squeezed between two glass slides and examined microscopically at x 10 magnification for the presence of sarcocystosis. Three positive samples from each animal species were then fixed in 10% formalin for histological processing. Seven positive samples collected from each animal species were preserved at -80°C or 90% ethanol for gene expression studies. Microsarcocysts were detected in 114 (54.5%) animals by light microscopy (LM). The infection rates in sheep, goat and cattle were 86, 61.8 and 28.6% respectively. The highest rate of infection was in the skeletal muscles of sheep (64.9%) and goats (63.6%) and in the heart of cattle (63.6%). The cysts were spindle to oval in shape and two stages were recognized, the peripheral metrocytes and centrally located banana-shaped bradyzoites. 18S rRNA gene expression studies confirmed the isolates from the sheep as S. ovicanis, goats as S. capracanis and cattle as S. bovicanis. This, to the best of our knowledge, is the first molecular identification of an isolate of S. ovicanis and S. capracanis in Malaysia. Further studies with electron microscopy (EM) are required in the future to compare the features of different types of Sarcocysts spp.
    Matched MeSH terms: Sarcocystis/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links