Displaying all 8 publications

Abstract:
Sort:
  1. Bai Y, Rafiq MK, Li S, Degen AA, Mašek O, Sun H, et al.
    J Hazard Mater, 2021 02 05;403:123647.
    PMID: 33264862 DOI: 10.1016/j.jhazmat.2020.123647
    Yak dung is used as fuel in Tibetan homes; however, this use is hazardous to health. An alternative use of the dung that would be profitable and offset the loss as a fuel would be very beneficial. Sweet sorghum silage with yak dung biochar as an additive was compared with a control silage with no additives and three silages with different commercial additives, namely Lactobacillus buchneri, Lactobacillus plantarum and Acremonium cellulase. Biochar-treated silage had a significantly greater concentration of water-soluble carbohydrates than the other silages (76 vs 12.4-45.8 g/kg DM) and a greater crude protein content (75.5 vs 61.4 g/kg DM), lactic acid concentration (40.7 vs 27.7 g/kg DM) and gross energy yield (17.8 vs 17.4 MJ/kg) than the control silage. Biochar-treated and control silages did not differ in in vitro digestibility and in total gas (507 vs 511 L/kg DM) and methane production (57.9 vs 57.1 L/kg DM). Biochar inhibited degradation of protein and water-soluble carbohydrates and enhanced lactic acid production, which improved storability of feed. It was concluded that yak dung biochar is an efficient, cost-effective ensiling additive. The profit could offset the loss of dung as fuel and improve the health of Tibetan people.
    Matched MeSH terms: Silage/analysis
  2. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al.
    Biomed Res Int, 2016;2016:7985167.
    PMID: 27429981 DOI: 10.1155/2016/7985167
    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.
    Matched MeSH terms: Silage/microbiology*
  3. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Asian-Australas J Anim Sci, 2019 Feb;32(2):224-232.
    PMID: 29879832 DOI: 10.5713/ajas.18.0175
    OBJECTIVE: Apart from various climatic differences, corn harvest stage and varieties are two major factors that can influence the yield and quality of corn silage in the tropics. A study was conducted to determine the optimum harvest stage of four corn varieties for silage production in Malaysia.

    METHODS: Corn was harvested at four growth stages; silking, milk, dough, and dent stages from four varieties; Sweet Corn hybrid 926, Suwan, breeding test line (BTL) 1 and BTL 2. Using a split plot design, the treatments were then analysed based on the plant growth performance, yield, nutritive and feeding values followed by a financial feasibility study for potential commercialization.

    RESULTS: Significant differences and interactions were detected across the parameters suggesting varying responses among the varieties towards the harvest stages. Sweet Corn was best harvested early in the dough stage due to high dry matter (DM) yield, digestible nutrient, and energy content with low fibre portion. Suwan was recommended to be harvested at the dent stage when it gave the highest DM yield with optimum digestible nutrient and energy content with low acid detergent fibre. BTL 1 and BTL 2 varieties can either be harvested at dough or dent stages as the crude protein, crude fibre, DM yield, DM content, digestible nutrient and energy were not significantly different at either stage. Further financial analysis showed that only Sweet Corn production was not financially feasible while Suwan had the best financial appraisal values among the grain varieties.

    CONCLUSION: In conclusion, only the grain varieties tested had the potential for silage making according to their optimum harvest stage but Suwan is highly recommended for commercialization as it was the most profitable.

    Matched MeSH terms: Silage
  4. Abdul Rahman N, Abd Halim MR, Mahawi N, Hasnudin H, Al-Obaidi JR, Abdullah N
    Biomed Res Int, 2017;2017:2038062.
    PMID: 28503566 DOI: 10.1155/2017/2038062
    Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32-37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum), B2 (P. freudenreichii subsp. shermanii), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 105 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii, the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage.
    Matched MeSH terms: Silage/microbiology*
  5. Jaafar SHS, Hashim R, Hassan Z, Arifin N
    Trop Life Sci Res, 2018 Mar;29(1):195-212.
    PMID: 29644024 MyJurnal DOI: 10.21315/tlsr2018.29.1.13
    This study was conducted to determine the physical and chemical composition of goat milk produced by eight local farms located in the central region of Malaysia. Farms 1 to 4 (F1-SC, F2-SP, F3-SP, F4-SBC) reared Saanen-type goats while farms 5 to 8 (F5-JK, F6-JPEC, F7-JTC, F8-JC), Jamnapari-type goats. The common feedstuffs used in all farms comprised of fresh or silage from Napier grass, feed pellets, and brans while two farms, F5-JK and F6-JPEC supplemented the feeds with soybean-based product. The total solid content, dry matter, and proximate composition of goat milk and feedstuffs from the different farms were determined and the results analysed using principal component analysis. Total solid content of goat milk from the Jamnapari crossbreed had the highest solid content ranging from 11.81% to 17.54% compared to milk from farms with Saanen and Saanen crossbreed (10.95% to 14.63%). Jamnapari-type goats from F5-JK, F6-JPEC, and F8-JC had significantly higher (p < 0.05) milk fat and protein contents (7.36%, 7.14%, and 6.59% fat; 5.08%, 6.19%, and 4.23% protein, respectively) than milk from other farms but, milk produced by Saanen-type goats from F4-SBC contained similar protein content (4.34%) to that from F8-JC. Total ash and carbohydrate contents in milk ranged between 0.67% to 0.86% and 3.26% to 4.71%, respectively, regardless of goat breed. Feeding soybean-based products appear to have a positive influence on milk fat and protein content in Jamnaparitype goats.
    Matched MeSH terms: Silage
  6. Jahromi MF, Liang JB, Ebrahimi R, Soleimani AF, Rezaeizadeh A, Abdullah N, et al.
    Animal, 2017 May;11(5):755-761.
    PMID: 27804905 DOI: 10.1017/S175173111600224X
    To alleviate adverse effects of heavy metal toxicity, diverse range of removing methods have been suggested, that is usage of algae, agricultural by-products and microorganisms. Here, we investigated lead (Pb) biosorption efficacy by two lactic acid bacteria species (LABs) in broiler chickens. In an in vitro study, Pb was added to culture medium of LABs (Lactobacillus pentosus ITA23 and Lactobacillus acidipiscis ITA44) in the form of lead acetate. Results showed that these LABs were able to absorb more than 90% of Pb from the culture medium. In follow-up in vivo study, LABs mixture was added to diet of broiler chickens contained lead acetate (200 mg/kg). Pb exposure significantly increased lipid peroxidation and decreased antioxidant activity in liver. The changes were recovered back to normal level upon LABs supplementation. Moreover, addition of LABs eliminated the liver tissue lesion and the suppressed performance in Pb-exposed chicks. Analysis of liver and serum samples indicated 48% and 28% reduction in Pb accumulation, respectively. In conclusion, results of this study showed that L. pentosus ITA23 and L. acidipiscis ITA44 effectively biosorb and expel dietary Pb from gastrointestinal tract of chickens.
    Matched MeSH terms: Silage/microbiology
  7. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Trop Anim Health Prod, 2018 Jun;50(5):1119-1124.
    PMID: 29455428 DOI: 10.1007/s11250-018-1538-2
    The potential of using whole corn crop silage and rice straw as an alternative feed for the beef cattle based on the intake and growth performance were evaluated. Using randomised completely block design, nine adult Mafriwal cattle were blocked intro three groups and treated with three different forage diets supplemented with 20% pelleted palm kernel cake on dry matter basis. The treatments were 100% rice straw (RS), 100% corn silage (CS) and an equal mixture of rice straw and corn silage (MIX) fed ad libitum. The animals were housed in individual pens, and the feeding trial was conducted for 12 weeks with 2 weeks of adaptation period. The results showed that CS had the best feed nutritive composition with the lowest concentration of highly indigestible fibre and the highest concentration of organic matter and energy. The CS also had the highest intake, and the corn silage inclusion in MIX managed to improve the intake on par with CS in terms of the dry matter intake of body weight (DMI of BW), voluntary intake (VI) and crude protein (CP) intake. Cattle fed with CS gave the highest and most stable BW gain with an average daily gain (ADG) of 808 g/day rivalling cross-bred cattle fed with high amount of concentrates. The all straw diet (RS) supplemented with PKC recorded a positive ADG of 133 g/day while the MIX gave 383 g/day matching total Napier grass diet.
    Matched MeSH terms: Silage/analysis*
  8. Baghdadi A, Halim RA, Ghasemzadeh A, Ramlan MF, Sakimin SZ
    PeerJ, 2018;6:e5280.
    PMID: 30386686 DOI: 10.7717/peerj.5280
    Background: Corn silage is an important feed for intense ruminant production, but the growth of corn relies heavily on the use of chemical fertilizers. Sustainable crop production requires careful management of all nutrient sources available on a farm, particularly in corn-based cropping systems.

    Methods: Experiments were conducted to determine the appropriate technique of corn-legume intercropping in conjunction with the supplemental use of chemical fertilizers, organic manure, and biofertilizers (BFs). Acetylene reduction assays (ARAs) were also performed on corn and soybean roots.

    Results: Combining chemical fertilizers with chicken manure (CM) in a 50:50 ratio and applying 50% NPK+50% CM+BF produced fresh forage and dry matter (DM) yields that were similar to those produced in the 100% nitrogen (N), phosphorus (P), potassium (K) treatment. Among the lone fertilizer treatments, the inorganic fertilizer (100% NPK) treatment produced the highest DM yield (13.86 t/ha) of forage and outyielded the 100% CM (9.74 t/ha) treatment. However, when CM was combined with NPK, the resulting DM yield of forage (13.86 t/ha) was the same as that resulting from 100% NPK (13.68 t/ha). Compared with CM applications alone, combinations of NPK and CM applications resulted in increased plant height, crop growth rates (CGRs) and leaf area index (LAI), but the values of these parameters were similar to those resulting from 100% NPK application. Fertilizers in which the ratio was 50% CM+50% NPK or 50% CM+50% NPK+BF resulted in protein yields that were similar to those resulting from conventional fertilizers. Similarly, the CP content did not significantly differ between applications of the 100% NPK and 50% CM+50% NPK fertilizers. The use of BFs had no significant impact on improving either the yield or quality of forage fertilized with inorganic or organic fertilizer. Lactic acid responded differently to different fertilizer applications and was significantly higher in the fertilized plots than in the unfertilized plots. Compared with treatments of lone chemical and lone organic manure fertilizers, treatments involving applications of BF and a combination of BF and NPK or CM resulted in higher ARA values.

    Discussion: There is no simple and easy approach to increase biological nitrogen fixation (BNF) in grain legumes grown as part of a cropping system under realistic farm field conditions. Overall, evidence recorded from this study proves that, compared with corn monocrops combined with CM and chemical fertilizers, corn-soybean intercrops could increase forage yields and quality, produce higher total protein yields, and reduce the need for protein supplements and chemical fertilizers.

    Matched MeSH terms: Silage
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links