Displaying all 7 publications

Abstract:
Sort:
  1. Adeeb N, Ton SH, Muslim N
    Clin Exp Hypertens A, 1990;12(6):1115-34.
    PMID: 2173984
    In order to examine whether erythrocyte membrane handling of sodium is influenced by factors other than hypertension, measurements of red cell sodium transport were studied in one hundred normotensive volunteers. Erythrocyte sodium content was found to increase with increasing age, body weight and mean arterial pressure (MAP). It is also significantly correlated with age, body weight and MAP. Total sodium efflux was found to be reduced and negatively correlated with age and body weight. A reduction in ouabain-sensitive sodium efflux was also observed with increasing age and body weight. In males, the rate of ouabain-sensitive sodium efflux is higher than in females. Race was found to have no effect on erythrocyte electrolyte content and cationic flux rates of subjects. These data suggest that when studies in hypertension are going to be carried out, control subjects carefully matched for age, body weight and sex should be used if confounding results are not to be obtained.
    Matched MeSH terms: Sodium Channels/metabolism*
  2. Usup G, Leaw CP, Cheah MY, Ahmad A, Ng BK
    Toxicon, 2004 Jul;44(1):37-43.
    PMID: 15225560
    This study was carried out to characterize the detection and quantitation of several paralytic shellfish poisoning (PSP) toxin congeners using a receptor binding assay (RBA). This involved competitive binding of the toxin congeners against tritium-labeled STX for receptor sites on rat brain sodium channels. Competitive binding curves were described by a four-parameter logistic equation. Half-saturation values (EC(50)) ranged from 4.38 nM for STX to 142 nM for GTX5. Receptor binding affinity was in the order STX>GTX1/4>neoSTX>GTX2/3>dcSTX>GTX5, and this was similar to the order of mouse toxicity of these congeners. Predicted toxin concentrations from observed STXeq values and EC(50) ratios relative to STX were within 20% or better of the actual concentrations used in the assay. In contrast predicted toxin concentrations using mouse toxicity ratios relative to STX did not provide a good match to actual concentrations, except for GTX1/4. This study has shown that the rat brain sodium channel RBA will provide a reliable integration of total toxicity of various PSP toxin congeners present in a sample.
    Matched MeSH terms: Sodium Channels/metabolism*
  3. Chadda KR, Jeevaratnam K, Lei M, Huang CL
    Pflugers Arch., 2017 06;469(5-6):629-641.
    PMID: 28265756 DOI: 10.1007/s00424-017-1959-1
    Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na+ current components play critical parts. Early peak, Na+ currents (I Na) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na+ currents (I Na-L) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of I Na-L can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na+ conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na+ channel abnormalities increasing I Na-L are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate I Na-L. These include (1) overlaps between steady-state activation and inactivation increasing window current, (2) kinetic deficiencies in Na+ channel inactivation leading to bursting phenomena associated with repetitive channel openings and (3) non-equilibrium gating processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased I Na-L.
    Matched MeSH terms: Voltage-Gated Sodium Channels/metabolism*
  4. Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ
    Steroids, 2020 03;155:108553.
    PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553
    Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
    Matched MeSH terms: Epithelial Sodium Channels/metabolism*
  5. Ramachandran CD, Gholami K, Lam SK, Hoe SZ
    Exp Biol Med (Maywood), 2023 Oct;248(20):1768-1779.
    PMID: 37828834 DOI: 10.1177/15353702231198085
    An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
    Matched MeSH terms: Epithelial Sodium Channels/metabolism
  6. Ismail NA, Baines DL, Wilson SM
    Eur J Pharmacol, 2014 Jun 05;732:32-42.
    PMID: 24657276 DOI: 10.1016/j.ejphar.2014.03.005
    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na(+) absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na(+) transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na(+) absorption was quantified electrometrically. Acutely (20min) activating PKA in glucocorticoid-deprived (24h) cells increased the abundance of Ser(221)-phosphorylated, Ser(327)-phosphorylated and total Nedd4-2 without altering the abundance of Thr(246)-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na(+) absorption. Activating PKA (20min) in glucocorticoid-treated (0.2µM dexamethasone, 24h) cells, on the other hand, increased the abundance of Ser(221)-, Ser(327)- and Thr(246)-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na(+) transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na(+) absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits.
    Matched MeSH terms: Epithelial Sodium Channels/metabolism
  7. Shahzad H, Giribabu N, Karim K, Kassim NM, Muniandy S, Salleh N
    PLoS One, 2017;12(3):e0172765.
    PMID: 28253299 DOI: 10.1371/journal.pone.0172765
    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence.
    Matched MeSH terms: Epithelial Sodium Channels/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links