Displaying all 3 publications

Abstract:
Sort:
  1. Rozainee M, Ngo SP, Salema AA, Tan KG, Ariffin M, Zainura ZN
    Bioresour Technol, 2008 Mar;99(4):703-13.
    PMID: 17379511
    This study was focused on investigating the optimum fluidising velocity during the combustion of rice husk in a bench-scale fluidised bed combustor (ID 210mm) to obtain low carbon ash in the amorphous form. When all other parameters are held constant, the optimum fluidizing velocity aids in almost complete combustion, thereby releasing the entrapped carbon for further conversion. This results in ash with consistently low carbon content (less than 2wt%). The range of fluidising velocities investigated was from as low as 1.5U(mf) to as high as 8U(mf). It was found that the optimum fluidising velocity was approximately 3.3U(mf) as the mixing of rice husk with the bed was good with a high degree of penetration into the sand bed. The resulting ash retained its amorphous form with low residual carbon content (at 2.88wt%) and minimal sand contamination as shown by the X-ray diffraction analysis.
    Matched MeSH terms: Soot/analysis
  2. Razak HA, Wahid NBA, Latif MT
    Arch Environ Contam Toxicol, 2019 Nov;77(4):587-593.
    PMID: 31359072 DOI: 10.1007/s00244-019-00656-3
    Anionic surfactants are one of the pollutants derived from particulate matter (PM) and adversely affect the health of living organisms. In this study, the compositions of surfactants extracted from PM and vehicle soot collected in an urban area were investigated. A high-volume air sampler was used to collect PM sample at urban area based on coarse (> 1.5 µm) and fine (soot was collected randomly from the exhaust pipe of various types of diesel and petrol vehicles using a soft brush during dry days. The concentration of anionic surfactants, such as Methylene Blue Active Substances (MBAS), was determined by the colorimetric method using UV-Vis Spectrophotometer. Morphological properties of the PM and exhaust soot sample was studied using field-emission scanning electron microscope. Results revealed that the MBAS concentration was dominated by fine mode particles (6.03 ± 3.97 µmol g-1), whereas heavy-duty vehicles, such as buses, demonstrated the highest surfactant concentration with an average value of 0.340 ± 0.180 µmol g-1. The structure of collected PM for all samples mostly appeared to be an irregular shape with the size range of ultrafine particles (0.05-0.2 µm). The emission of surfactants from diesel and petrol vehicles, especially at urban areas, should be a major concern, because they could negatively affect human health and the environment.
    Matched MeSH terms: Soot/analysis
  3. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, et al.
    Environ Int, 2017 11;108:127-136.
    PMID: 28843141 DOI: 10.1016/j.envint.2017.08.006
    Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO2 and 9 for NOx mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx. Functional differences in the immune system were suggested by transcriptome analyses.
    Matched MeSH terms: Soot/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links