Displaying all 4 publications

Abstract:
Sort:
  1. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Abu Osman NA
    J Biomed Mater Res A, 2015 Jul;103(7):2482-98.
    PMID: 25407786 DOI: 10.1002/jbm.a.35371
    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials.
    Matched MeSH terms: Starch/administration & dosage*
  2. Iyngkaran N, Yadav M
    J Trop Pediatr, 1998 08;44(4):199-203.
    PMID: 9718904 DOI: 10.1093/tropej/44.4.199
    Rice-starch based oral rehydration solution (ORS) has been shown to be a suitable alternative to glucose-based ORS in the treatment of both choleragenic and non-choleragenic dehydration in older infants and children. However, in young infants, the wider use of rice-starch ORS has been impeded because of theoretical concern about the poor digestibility of starch. The present study was conducted to evaluate the safety and efficacy of rice-starch ORS in the rehydration of acute diarrhoeal dehydration in infants below 6 months of age. Sixty-three infants with clinical features of acute gastroenteritis were randomly allocated to two groups. Group A, comprising 31 infants, received a rice-starch ORS and group B, comprising 32 infants, received a glucose-based ORS. The response to treatment was monitored by weight gain, stool frequency, and decrease in vomiting. The mean weight gain in moderately dehydrated and mildly dehydrated infants in both groups A and B were closely similar at 12, 24, and 48 h after treatment with the respective ORS solution. The infants without dehydration receiving rice-starch ORS had significantly greater weight gain at 12 h compared to those receiving glucose ORS. However, this difference was not observed at 24 and 48 h. The results of this study show that rice-starch ORS is as safe and efficacious as glucose-based ORS in young infants.
    Matched MeSH terms: Starch/administration & dosage*
  3. Bin LK, Helaluddin ABM, Islam Sarker MZ, Mandal UK, Gaurav A
    Pak J Pharm Sci, 2020 Mar;33(2):551-559.
    PMID: 32276897
    Orally disintegrating tablet (ODT) is a friendly dosage form that requires no access to water and serves as a solution to non-compliance. There are many co-processed adjuvants available in the market. However, there is no single product possesses all the ideal characteristics such as good compressibility, fast disintegration and good palatability for ODT application. The aim of this research was to produce a xylitol-starch base co-processed adjuvant which is suitable for ODT application. Two processing methods namely wet granulation and freeze drying were used to compare the characteristics of co-processed adjuvant comprising of xylitol, starch and crospovidone XL-10 mixed at various ratios. The co-processed excipients were compressed into ODT and physically characterized for powder flow, particle size, hardness, thickness, weight, friability, in-vitro disintegration time and in-situ disintegration time, lubricant sensitivity, dilution potential, Fourier transform infrared spectroscopy, scanning electronic microscopy and x-ray diffraction analysis. Formulation F6 was selected as the optimum formulation due to the fastest in-vitro (135.33±11.52 s) and in-situ disintegration time (88.67±13.56s) among all the formulations (p<0.05). Increase in starch component decreases disintegration time of ODT. The powder flow fell under the category of fair flow. Generally, it was observed that freeze drying method produced smaller particle size granules compared to wet granulation method. ODT produced from freeze drying method had shorter disintegration time compared to ODT from wet granulation batch. In conclusion, a novel co-processed excipient comprised of xylitol, starch and crospovidone XL-10, produced using freeze drying method with fast disintegration time, good compressibility and palatability was developed and characterized. The co-processed excipient is suitable for ODT application.
    Matched MeSH terms: Starch/administration & dosage
  4. Subramanian R, Asmawi MZ, Sadikun A
    Acta Biochim. Pol., 2008;55(2):391-8.
    PMID: 18511986
    There has been an enormous interest in the development of alternative medicines for type 2 diabetes, specifically screening for phytochemicals with the ability to delay or prevent glucose absorption. The goal of the present study was to provide in vitro evidence for potential inhibition of alpha-glucosidase and alpha-amylase enzymes, followed by a confirmatory in vivo study on rats to generate a stronger biochemical rationale for further studies on the ethanolic extract of Andrographis paniculata and andrographolide. The extract showed appreciable alpha-glucosidase inhibitory effect in a concentration-dependent manner (IC(50)=17.2+/-0.15 mg/ml) and a weak alpha-amylase inhibitory activity (IC(50)=50.9+/-0.17 mg/ml). Andrographolide demonstrated a similar (IC(50)=11.0+/-0.28 mg/ml) alpha-glucosidase and alpha-amylase inhibitory activity (IC(50)=11.3+/-0.29 mg/ml). The positive in vitro enzyme inhibition tests paved way for confirmatory in vivo studies. The in vivo studies demonstrated that A. paniculata extract significantly (P<0.05) reduced peak blood glucose and area under curve in diabetic rats when challenged with oral administration of starch and sucrose. Further, andrographolide also caused a significant (P<0.05) reduction in peak blood glucose and area under the curve in diabetic rats. Hence alpha-glucosidase inhibition may possibly be one of the mechanisms for the A. paniculata extract to exert antidiabetic activity and indicates that AP extract can be considered as a potential candidate for the management of type 2 diabetes mellitus.
    Matched MeSH terms: Starch/administration & dosage
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links