Displaying all 6 publications

Abstract:
Sort:
  1. Sarraf M, Razak BA, Nasiri-Tabrizi B, Dabbagh A, Kasim NHA, Basirun WJ, et al.
    J Mech Behav Biomed Mater, 2017 02;66:159-171.
    PMID: 27886563 DOI: 10.1016/j.jmbbm.2016.11.012
    Tantalum pentoxide nanotubes (Ta2O5NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta2O5NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H2SO4: HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin-1. The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity.
    Matched MeSH terms: Tantalum/analysis*
  2. Quah HJ, Ahmad FH, Lim WF, Hassan Z
    ACS Omega, 2020 Oct 20;5(41):26347-26356.
    PMID: 33110962 DOI: 10.1021/acsomega.0c02120
    Nitrogen-infused wet oxidation at different temperatures (400-1000 °C) was employed to transform tantalum-hafnia to hafnium-doped tantalum oxide films. High-temperature wet oxidation at 1000 °C marked an onset of crystallization occurring in the film, accompanied with the formation of an interfacial oxide due to a reaction between the inward-diffusing hydroxide ions, which were dissociated from the water molecules during wet oxidation. The existence of nitrogen has assisted in controlling the interfacial oxide formation. However, high-temperature oxidation caused a tendency for the nitrogen to desorb and form N-H complex after reacting with the hydroxide ions. Besides, the presence of N-H complex implied a decrease in the passivation at the oxide-Si interface by hydrogen. As a consequence, defect formation would happen at the interface and influence the metal-oxide-semiconductor characteristics of the samples. In comparison, tantalum-hafnia subjected to nitrogen-infused wet oxidation at 600 °C has obtained the highest dielectric constant, the largest band gap, and the lowest slow trap density.
    Matched MeSH terms: Tantalum
  3. Ariffin Abas, Abdul Halim Shaari, Zainal Abidin Talib, Zaidan Abdul Wahab
    MyJurnal
    The computer, together with Lab View software, can be used as an automatic data acquisition system. This project deals with the development of a computer interfacing technique for the study of Hall Effect and converting the existing automation system into a Web-based automation system. The drive board RS 217-3611 with PCI 6025E card and stepper motor RS191-8340 with a resolution of 0.1mm, was used to move a pair of permanent magnets backward and forward against the sample. The General Interface Bus (GPIB) card interfaces, together with digital nano voltmeter and Tesla meter using serial port RS232 interface, are used for measuring the potential difference and magnetic field strength respectively. Hall Effect measurement on copper (Cu) and tantalum (Ta) showed negative and positive sign Hall coefficient. Therefore, the system has electron and hole charge carriers respectively at room temperature. The parameters such as drift velocity, conductivity, mobility, Hall Coefficient and charge carrier concentration were also automatically displayed on the front panel of Lab View programming and compared with standard value. The Web-based automation system can be remotely controlled and monitored by users in remote locations using only their web browsers. In addition, video conferencing through Net Meeting has been used to provide audio and video feedback to the client.
    Matched MeSH terms: Tantalum
  4. Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Hamdi Abd Shukor M, Kamarul T
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110304.
    PMID: 31761210 DOI: 10.1016/j.msec.2019.110304
    Surgical site infection associated with surgical instruments has always been a factor in delaying post-operative recovery of patients. The evolution in surface modification of surgical instruments can be a potential choice to overcome the nosocomial infection mainly caused by bacterial populations such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A study was, therefore, conducted characterising the morphology, hydrophobicity, adhesion strength, phase, Nano-hardness, surface chemistry, antimicrobial and biocompatibility of SS 316L steel deposited with a Nano-composite layer of Silver (Ag) and Tantalum oxide (Ta2O5) using physical vapour deposition magnetron sputtering. The adhesion strength of Ag/AgTa2O5 coating on SS 316L and treated at 250-850 °C of thermal treatment was evaluated using micro-scratch. The Ag/Ag-Ta2O5-400 °C was shown a 154% improvement in adhesion strength on SS 316L when compared with as-sputtered layer or Ag/Ag-Ta2O5-250, 550, 700 and 850 °C. The FESEM, XPS, and XRD indicated the segregation of Ag on the surface of SS 316L after the crystallization. Wettability and Nano-indentation tests demonstrated an increase in hydrophobicity (77.3 ± 0.3°) and Nano-hardness (1.12 ± 0.43 GPa) when compared with as-sputtered layer, after the 400 °C of thermal treatment. The antibacterial performance on Ag/Ag-Ta2O5-400 °C indicated a significant zone of inhibition to Staphylococcus aureus (A-axis: 16.33 ± 0.58 mm; B-axis: 25.67 ± 0.58 mm, p 
    Matched MeSH terms: Tantalum/chemistry
  5. Jamil K, Chua KH, Joudi S, Ng SL, Yahaya NH
    J Orthop Surg Res, 2015;10:27.
    PMID: 25889942 DOI: 10.1186/s13018-015-0166-z
    Functional tissue engineering has emerged as a potential means for treatment of cartilage defect. Development of a stable cartilage composite is considered to be a good option. The aim of the study was to observe whether the incorporation of cultured chondrocytes on porous tantalum utilizing fibrin as a cell carrier would promote cartilage tissue formation.
    Matched MeSH terms: Tantalum
  6. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
    Matched MeSH terms: Tantalum
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links