Displaying all 7 publications

Abstract:
Sort:
  1. Lai VY, Hejazi F, Saleem S
    PLoS One, 2020;15(11):e0238654.
    PMID: 33147216 DOI: 10.1371/journal.pone.0238654
    Towers are important structures for installing radio equipment to emit electromagnetic waves that allow radio, television and/or mobile communications to function. Feasibility, cost, and speed of the construction are considered in the design process as well as providing stability and functionality for the communication tower. This study proposes the new design for construction of segmental tubular section communication tower with ultra-high-performance fibre concrete (UHPFC) material and prestress tendon to gain durability, ductility, and strength. The proposed mix design for UHPFC in this study which used for construction of communication tower is consisted of densified Silica Fume, Silica fine and coarse Sand and hooked-ends Steel Fiber. The prestressed tendon is used in the tower body to provide sufficient strength against the lateral load. The proposed design allows the tower to be built with three precast segments that are connected using bolts and nuts. This paper presents a novel method of construction and installation of the communication tower. The advantages of proposed design and construction process include rapid casting of the precast segment for the tower and efficient installation of segments in the project. The use of UHPFC material with high strength and prestress tendon can reduce the size and thickness of the tower as well as the cost of construction. Notably, this material can also facilitate the construction and installation procedure.
    Matched MeSH terms: Telecommunications/instrumentation*
  2. Ab Wahab N, Mohd Salleh MK, Ismail Khan Z, Abd Rashid NE
    ScientificWorldJournal, 2014;2014:671369.
    PMID: 25121132 DOI: 10.1155/2014/671369
    Reconfigurable ring filter based on single-side-access ring topology is presented. Using capacitive tuning elements, the electrical length of the ring can be manipulated to shift the nominal center frequency to a desired position. A synthesis is developed to determine the values of the capacitive elements. To show the advantage of the synthesis, it is applied to the reconfigurable filter design using RF lumped capacitors. The concept is further explored by introducing varactor-diodes to continuously tune the center frequency of the ring filter. For demonstration, two prototypes of reconfigurable ring filters are realized using microstrip technology, simulated, and measured to validate the proposed concept. The reconfigured filter using lumped elements is successfully reconfigured from 2 GHz to 984.4 MHz and miniaturized by 71% compared to the filter directly designed at the same reconfigured frequency, while, for the filter using varactor-diodes, the frequency is chosen from 1.10 GHz to 1.38 GHz spreading over 280 MHz frequency range. Both designs are found to be compact with acceptable insertion loss and high selectivity.
    Matched MeSH terms: Telecommunications/instrumentation*
  3. Islam MM, Islam MT, Faruque MR
    ScientificWorldJournal, 2013;2013:378420.
    PMID: 24385878 DOI: 10.1155/2013/378420
    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.
    Matched MeSH terms: Telecommunications/instrumentation*
  4. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Telecommunications/instrumentation*
  5. Zubair S, Fisal N, Baguda YS, Saleem K
    Sensors (Basel), 2013;13(10):13005-38.
    PMID: 24077319 DOI: 10.3390/s131013005
    Interest in the cognitive radio sensor network (CRSN) paradigm has gradually grown among researchers. This concept seeks to fuse the benefits of dynamic spectrum access into the sensor network, making it a potential player in the next generation (NextGen) network, which is characterized by ubiquity. Notwithstanding its massive potential, little research activity has been dedicated to the network layer. By contrast, we find recent research trends focusing on the physical layer, the link layer and the transport layers. The fact that the cross-layer approach is imperative, due to the resource-constrained nature of CRSNs, can make the design of unique solutions non-trivial in this respect. This paper seeks to explore possible design opportunities with wireless sensor networks (WSNs), cognitive radio ad-hoc networks (CRAHNs) and cross-layer considerations for implementing viable CRSN routing solutions. Additionally, a detailed performance evaluation of WSN routing strategies in a cognitive radio environment is performed to expose research gaps. With this work, we intend to lay a foundation for developing CRSN routing solutions and to establish a basis for future work in this area.
    Matched MeSH terms: Telecommunications/instrumentation*
  6. Houkin K, Fukuhara S, Selladurai BM, Zurin AA, Ishak M, Kuroda S, et al.
    Neurol. Med. Chir. (Tokyo), 1999 Oct;39(11):773-7; discussion 777-8.
    PMID: 10598447
    A new image transmission and teleconference system using international digital telephone services was established between Japan and Malaysia. This new system consists of an ordinary personal computer, image scanner, and terminal adapter for digital telephone lines. The quality of images transferred using this system was high enough for diagnosis and discussion except for images such as radiographs requiring huge data transfer. Transmission of one image took approximately 20 seconds. The cost performance was almost equal to the conventional mailing system. The most remarkable advantage of this new system is the high quality of transferred images, the cost and time performance, and security of the medical information. New communication systems using international digital networks including the internet may allow re-distribution of medical resources between advanced countries and developing countries in neurosurgery.
    Matched MeSH terms: Telecommunications/instrumentation*
  7. Fernandez PR, Ng KH, Kaur S
    Health Phys, 2019 06;116(6):835-839.
    PMID: 30844902 DOI: 10.1097/HP.0000000000001037
    There is widespread anxiety and speculation about RF-EMF emissions by telecommunication base stations and structures, as it is perceived by some to be unsafe and a threat to public health. Scientists, medical experts, politicians, journalists, and mobile telecommunication company specialists are involved in an active debate on whether people are immune to RF or if we are gambling with our future. Interviews with 31 individuals from 7 stakeholder groups in Malaysia reveal that the residents' main concerns are that the telecommunication companies do not follow guidelines and as a result the telecommunication structures are constructed close to their homes, which they perceive as a threat to public health. Some residents also do not want these structures because of cultural reasons, while some are jealous over rental income received by the landlords. Meanwhile, the authorities entrusted with safe-guarding public health are involved in a blame game as there is no agency that is clearly in charge. The interviews also highlight that the current risk communication initiatives are more reactive rather than proactive, and that the authorities do not speak in one voice. Based on the outcome of the interviews, eleven recommendations are formulated to improve risk communication initiatives in Malaysia. The recommendations stress on repairing, building, and strengthening trust, because trust in agencies, along with credibility, determines risk communication initiatives' effectiveness. These strategies can also be effectively replicated across regions to deal with contestations over RF-EMF emissions and the impact on health.
    Matched MeSH terms: Telecommunications/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links