Teleradiology is the most mature and rapidly evolving specialty in telemedicine. The use of teleradiology has grown tremendously during the past few years. This article describes the role of teleradiology in health care along with a brief history of its development in tandem with advances in telecommunications and computer technologies. Teleradiology standards, image acquisition, data compression, transmission and image interpretation are summarised. The impact of teleradiology in the practice of radiology, traces the evolution of the modality especially in the Malaysian perspective and its current and future role are discussed.
In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.
The purpose of this study was to validate and assess the accuracy and usefulness of sending short video clips in 3gp file format of an entire scan series of patients, using mobile telephones running on 3G-MMS technology, to enable consultation between junior doctors in a neurosurgical unit and the consultants on-call after office hours.
This paper concentrates on strategies for less costly handling of medical images. Aspects of digitization using conventional digital cameras, lossy compression with good diagnostic quality, and visualization through less costly monitors are discussed.
This paper presents the development of kidney TeleUltrasound consultation system. The TeleUltrasound system provides an innovative design that aids the acquisition, archiving, and dissemination of medical data and information over the internet as its backbone. The system provides data sharing to allow remote collaboration, viewing, consultation, and diagnosis of medical data. The design is layered upon a standard known as Digital Imaging and Communication in Medicine (DICOM). The DICOM standard defines protocols for exchanging medical images and their associated data. The TeleUltrasound system is an integrated solution for retrieving, processing, and archiving images and providing data storage management using Structured Query Language (SQL) database. Creating a web-based interface is an additional advantage to achieve global accessibility of experts that will widely open the opportunity of greater examination and multiple consultations. This system is equipped with a high level of data security and its performance has been tested with white, black, and gray box techniques. And the result was satisfactory. The overall system has been evaluated by several radiologists in Malaysia, United Arab Emirates, and Sudan, the result is shown within this paper.