Displaying all 7 publications

Abstract:
Sort:
  1. Arshad NF, Nordin FJ, Foong LC, In LLA, Teo MYM
    PLoS One, 2024;19(8):e0306111.
    PMID: 39146295 DOI: 10.1371/journal.pone.0306111
    The inability of existing vaccines to cope with the mutation rate has highlighted the need for effective preventative strategies for COVID-19. Through the secretion of immunoglobulin A, mucosal delivery of vaccines can effectively stimulate mucosal immunity for better protection against SARS-CoV-2 infection. In this study, various immunoinformatic tools were used to design a multi-epitope oral vaccine against SARS-CoV-2 based on its receptor-binding domain (RBD) and heptad repeat (HR) domains. T and B lymphocyte epitopes were initially predicted from the RBD and HR domains of SARS-CoV-2, and potential antigenic, immunogenic, non-allergenic, and non-toxic epitopes were identified. Epitopes that are highly conserved and have no significant similarity to human proteome were selected. The epitopes were joined with appropriate linkers, and an adjuvant was added to enhance the vaccine efficacy. The vaccine 3D structure constructs were docked with toll-like receptor 4 (TLR-4) and TLR1-TLR2, and the binding affinity was calculated. The designed multi-epitope vaccine construct (MEVC) consisted of 33 antigenic T and B lymphocyte epitopes. The results of molecular dockings and free binding energies confirmed that the MEVC effectively binds to TLR molecules, and the complexes were stable. The results suggested that the designed MEVC is a potentially safe and effective oral vaccine against SARS-CoV-2. This in silico study presents a novel approach for creating an oral multi-epitope vaccine against the rapidly evolving SARS-CoV-2 variants. These findings offer valuable insights for developing an effective strategy to combat COVID-19. Further preclinical and clinical studies are required to confirm the efficacy of the MEVC vaccine.
    Matched MeSH terms: Toll-Like Receptor 4/immunology
  2. Mai CW, Kang YB, Hamzah AS, Pichika MR
    Food Funct, 2018 Jun 20;9(6):3344-3350.
    PMID: 29808897 DOI: 10.1039/c8fo00136g
    Vanilloid (4-hydroxy-3-methoxyphenyl benzenoid) containing foods are reported to possess many biological activities including anti-inflammatory properties. Homodimerisation of the Toll-like receptor-4 (TLR-4)/Myeloid differentiation factor 2 (MD-2) complex results in life-threatening complications in inflammatory disorders. In this study, we report activity of vanilloids in inhibition of TLR-4/MD-2 homodimersization and their molecular interactions with the receptor. The inhibitory activities of vanilloids were assessed in vitro by determining their antagonistic actions of lipopolysaccharide from Escherichia coli (LPSEc) in activation of TLR-4/MD-2 homodimerisation in TLR-4/MD-2/CD-14 transfected HEK-293 cells. The in vitro anti-inflammatory activity of vanilloids was also determined using RAW 264.7 cells. All the vanilloids were found to be active in the inhibition of TLR-4/MD-2 homodimersiation and nitric oxide production in RAW 264.7 cells. Rigid and flexible molecular docking studies were performed to gain insight into interactions between vanilloids and the binding site of the TLR-4/MD-2 complex.
    Matched MeSH terms: Toll-Like Receptor 4/immunology
  3. Hayati AR, Mohamed AE, Tan GC
    Malays J Pathol, 2010 Jun;32(1):13-9.
    PMID: 20614721 MyJurnal
    The placenta constitutes a physical and immunological barrier against infectious agents. Toll-like receptors (TLRs) are essential components for the induction of innate immunity responses in different human tissues including the placenta. We investigated the expressions of TLR2 and TLR4 in the decidua and amniotic cells in non-inflamed placenta and placenta with infection.
    Matched MeSH terms: Toll-Like Receptor 4/immunology
  4. Abbas MA, Suppian R
    J Infect Dev Ctries, 2019 11 30;13(11):1057-1061.
    PMID: 32087079 DOI: 10.3855/jidc.11331
    INTRODUCTION: An earlier constructed recombinant BCG expressing the MSP-1C of Plasmodium falciparum, induced inflammatory responses leading to significant production of nitric oxide (NO) alongside higher expression of the enzyme inducible nitric oxide synthase (iNOS) and significant production of the regulatory cytokine, IL-10, indicating significant immunomodulatory effects of the construct. The mechanism of these responses had not been established but is thought to involve toll-like receptor 4 (TLR-4).

    METHODOLOGY: The present study was carried out to determine the role of TLR-4 on eliciting the immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum leading to the production of NO and IL-10, as well as the expression of iNOS. Six groups of mice (n = 6 per group) were immunised thrice, three weeks apart with intraperitoneal phosphate buffered saline T80 (PBS-T80), BCG or rBCG in the presence or absence of a TLR-4 inhibitor; TAK-242, given one hour prior to each immunisation. Peritoneal macrophages were harvested from the mice and cultured for the determination of NO, iNOS and IL-10 via Griess assay, ELISA and Western blot respectively.

    RESULTS: The results showed significant inhibition of the production of NO and IL-10 and the expression of iNOS in all groups of mice in the presence of TAK-242.

    CONCLUSIONS: These results presented evidence of the role of TLR-4/rBCG attachment mechanism in modulating the production of NO and IL-10 and the expression of iNOS in response to our rBCG-based malaria vaccine candidate expressing MSP-1C of P. falciparum.

    Matched MeSH terms: Toll-Like Receptor 4/immunology*
  5. Yahaya MAF, Bakar ARA, Stanslas J, Nordin N, Zainol M, Mehat MZ
    BMC Biotechnol, 2021 06 05;21(1):38.
    PMID: 34090414 DOI: 10.1186/s12896-021-00697-4
    BACKGROUND: Neuroinflammation has been identified to be the key player in most neurodegenerative diseases. If neuroinflammation is left to be unresolved, chronic neuroinflammation will be establish. Such situation is due to the overly-activated microglia which have the tendency to secrete an abundance amount of pro-inflammatory cytokines into the neuron microenvironment. The abundance of pro-inflammatory cytokines will later cause toxic and death to neurons. Toll-like receptor 4 (TLR4)/MD-2 complex found on the cell surface of microglia is responsible for the attachment of LPS and activation of nuclear factor-κB (NF-κB) downstream signalling pathway. Albeit vitexin has been shown to possess anti-inflammatory property, however, little is known on its ability to bind at the binding site of TLR4/MD-2 complex of microglia as well as to be an antagonist for LPS.

    RESULTS: The present study reveals that both vitexin and donepezil are able to bind at the close proximity of LPS binding site located at the TLR4/MD-2 complex with the binding energy of - 4.35 and - 9.14 kcal/mol, respectively. During molecular dynamic simulations, both vitexin and donepezil formed stable complex with TLR4/MD-2 throughout the 100 ns time length with the root mean square deviation (RMSD) values of 2.5 Å and 4.0 Å, respectively. The root mean square fluctuation (RMSF) reveals that both compounds are stable. Interestingly, the radius of gyration (rGyr) for donepezil shows notable fluctuations when compare with vitexin. The MM-GBSA results showed that vitexin has higher binding energy in comparison with donepezil.

    CONCLUSIONS: Taken together, the findings suggest that vitexin is able to bind at the binding site of TLR4/MD-2 complex with more stability than donepezil throughout the course of 100 ns simulation. Hence, vitexin has the potential to be an antagonist candidate for LPS.

    Matched MeSH terms: Toll-Like Receptor 4/immunology
  6. Sosroseno W, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2009 Feb;24(1):50-5.
    PMID: 19121070 DOI: 10.1111/j.1399-302X.2008.00475.x
    Human osteoblasts induced by inflammatory stimuli express an inducible nitric oxide synthase (iNOS). The aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans lipopolysaccharide stimulates the production of nitric oxide (NO) by a human osteoblast-like cell line (HOS cells).
    Matched MeSH terms: Toll-Like Receptor 4/immunology
  7. Castaño-Rodríguez N, Kaakoush NO, Pardo AL, Goh KL, Fock KM, Mitchell HM
    Hum Immunol, 2014 Aug;75(8):808-15.
    PMID: 24929142 DOI: 10.1016/j.humimm.2014.06.001
    Gastric cancer (GC) is a progressive process initiated by Helicobacter pylori-induced inflammation. Initial recognition of H. pylori involves Toll-like receptors (TLRs), central molecules in the host inflammatory response. Here, we investigated the association between novel polymorphisms in genes involved in the TLR signalling pathway, including TLR2, TLR4, LBP, MD-2, CD14 and TIRAP, and risk of H. pylori infection and related GC.
    Matched MeSH terms: Toll-Like Receptor 4/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links