Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Watanabe M, Sadiq MB, Mulop NIA, Mohammed K, Rani PAM, Fong LS, et al.
    Korean J Parasitol, 2020 Oct;58(5):487-492.
    PMID: 33202500 DOI: 10.3347/kjp.2020.58.5.487
    Toxoplasmosis is caused by an obligate intracellular protozoan parasite; Toxoplasma gondii, which is one of the most important zoonotic parasite worldwide. In dogs, the sexual reproductive cycle of T. gondii is lacking, and the animals are not widely consumed as food, but they are vital in the mechanical transmission of the parasite. However, there is no present data on the exposure of stray dogs to T. gondii in Malaysia. The objective of this serological survey was to determine the prevalence of T. gondii antibodies (IgG) and associated factors in stray dogs in East and West Malaysia. Antibodies to T. gondii were determined in serum samples from 222 stray dogs from 6 different states in East and West Malaysia (Peninsular Malaysia) using an Indirect ELISA. The seroprevalence for T. gondii was 23.4% (Confidence interval: CI 17.8-29.2%). Stray dogs from Selangor and Kuala Lumpur had the highest seroprevalence (32.4%; CI 13.2-45.5%) and lowest in those from Penang and Kedah (12.5%; CI 1.3-23.5%). Gender and breed were not associated with T. gondii seropositivity. However, adult dogs were more likely to be seropositive for T. gondii (OR=2.89; CI 1.1-7.7) compared with younger dogs. These results revealed that T. gondii is prevalent in stray dogs in the studied areas in Malaysia, and indicative of the level of environmental contamination of this parasite especially in urban areas.
    Matched MeSH terms: Toxoplasmosis, Animal/immunology; Toxoplasmosis, Animal/epidemiology*; Toxoplasmosis, Animal/parasitology*
  2. Thomas V
    Malays J Pathol, 1979 Aug;2:23-31.
    PMID: 263419
    Matched MeSH terms: Toxoplasmosis, Animal/transmission*
  3. Normaznah Y, Azizah MA, Azuan MI, Latifah I, Rahmat S, Nasir MA
    PMID: 26521512
    Numerous studies have reported the prevalence of toxoplasmosis among Malaysians and various domestic animals; but there is paucity of information on its prevalence among rodents which could potentially contribute to the transmission of Toxoplasma gondii in both domestic and sylvatic fauna. Five hundred twenty-six rodents were captured from six locations in Malaysia and identified to species. Serum samples were collected from these rodents and tested for T.gondii antibodies using an immunofluorescent antibody test (IFAT). T.gondii antibodies were found in 5.9% (31/526) of the tested samples. Most of the positive antibodies were from commensal rats: Rattus exulans (9/64, 14.0%), Rattus argentiventer (2/8, 25%), Rattus rattus diardii (10/166, 6.0%) and Rattus tiomanicus (6/215, 2.7%). Only two of the forest rats were positive: Maxomys rajah (1/9, 11.1%) and Rattus bowersi (1/12, 8.3%). Eighteen point one percent of ground squirrels (Tupaia glis) tested (2/11) were positive for antibodies. The highest antibodies titer (1:1024) was found in Rattus exulans followed by T.glis (1:256). Sabak Bernam, Selangor had the highest prevalence (10.8%) followed by Baling, Kedah (5.0%) and Bagan Terap, Selangor (4.0%). None of the serum samples of rodents collected from Gua Musang, Kelantan; Jasin, Malacca; or Labis, Johor were positive. Our study reports for the first time the serologic prevalence of T.gondii antibodies among rodents in Peninsular Malaysia. Further studies are needed to confirm T.gondii infection among wild rodents, such as a bioassay, to assess their potential role in transmission of the parasite.
    Matched MeSH terms: Toxoplasmosis, Animal/immunology; Toxoplasmosis, Animal/epidemiology*
  4. Dorny P, Casman C, Sani R, Vercruysse J
    Ann Trop Med Parasitol, 1993 Aug;87(4):407-10.
    PMID: 8250633
    Matched MeSH terms: Toxoplasmosis, Animal/diagnosis; Toxoplasmosis, Animal/epidemiology*
  5. Parthasarathy S, Fong MY, Ramaswamy K, Lau YL
    Am J Trop Med Hyg, 2013 May;88(5):883-7.
    PMID: 23509124 DOI: 10.4269/ajtmh.12-0727
    Toxoplasmosis in humans and other animals is caused by the protozoan parasite Toxoplasma gondii. During the process of host cell invasion and parasitophorous vacuole formation by the tachyzoites, the parasite secretes Rhoptry protein 8 (ROP8), an apical secretory organelle. Thus, ROP8 is an important protein for the pathogenesis of T. gondii. The ROP8 DNA was constructed into a pVAX-1 vaccine vector and used for immunizing BALB/c mice. Immunized mice developed immune response characterized by significant antibody responses, antigen-specific proliferation of spleen cells, and production of high levels of IFN-γ (816 ± 26.3 pg/mL). Challenge experiments showed significant levels of increase in the survival period (29 days compared with 9 days in control) in ROP8 DNA vaccinated mice after a lethal challenge with T. gondii. Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.
    Matched MeSH terms: Toxoplasmosis, Animal/immunology*; Toxoplasmosis, Animal/parasitology; Toxoplasmosis, Animal/prevention & control
  6. Puvanesuaran VR, Noordin R, Balakrishnan V
    Avian Dis, 2013 Mar;57(1):128-32.
    PMID: 23678741
    Toxoplasma gondii is a parasitic protozoan that infects nearly one-third of humans. The present study was performed to isolate and genotype T. gondii from free-range ducks in Malaysia. Sera, heads, and hearts from 205 ducks were obtained from four states in Peninsular Malaysia, and 30 (14.63%) sera were found to be seropositive when assayed with the modified agglutination test (MAT > or = 1:6). All the positive samples were inoculated into mice, and T. gondii was successfully isolated from four individual duck samples (1.95%), which were initially found to be strongly seropositive (MAT > or = 1:24). The isolates were subjected to PCR-RFLP analysis, and two T. gondii strains were identified: type I and type II. This is the first reported study on the genetic characterization of T. gondii isolates from free-range farm animals in Southeast Asia.
    Matched MeSH terms: Toxoplasmosis, Animal/blood; Toxoplasmosis, Animal/epidemiology*; Toxoplasmosis, Animal/parasitology
  7. Puvanesuaran VR, Noordin R, Balakrishnan V
    PLoS One, 2013;8(4):e61730.
    PMID: 23613920 DOI: 10.1371/journal.pone.0061730
    Toxoplasma gondii is a parasitic protozoan that infects nearly one-third of the world population. The present study was done to isolate and genotype T. gondii from wild boar from forests of Pahang, Malaysia. A total of 30 wild boars' blood, heads and hearts were obtained for this study and 30 (100.0%) were found to be seropositive when assayed with modified agglutination test (MAT ≥ 6). The positive samples were inoculated into mice and T. gondii was only isolated from samples that had strong seropositivity (MAT ≥ 1:24).The isolates were subjected to PCR-RFLP analysis and all the Peninsular Malaysia isolates of T. gondii are of clonal type I.
    Matched MeSH terms: Toxoplasmosis, Animal/parasitology*
  8. Puvanesuaran VR, Ibrahim N, Noordin R, Balakrishnan V
    Eur Rev Med Pharmacol Sci, 2012 Sep;16(9):1179-83.
    PMID: 23047500
    AIM: A method was developed to separate contaminant-free viable Toxoplasma gondii cysts from brain samples of infected mice for molecular biology studies and reinfection.
    MATERIALS AND METHODS: The mice brains were homogenized and washed with phosphate buffered saline (PBS) Tween 80 prior to fractionation using 19-22% dextran solution. Finally, the supernatant was purified by two-step membrane filtration (100-160 microm and < 10 microm) to obtain pure T. gondii cyst. The isolates were analyzed through microscopic observation, qPCR and by reinfection of new batch of mice.
    RESULTS: T. gondii cysts were best isolated with 21% dextran solution and two step filtration.
    CONCLUSIONS: The method was observed not to disrupt the integrity of the cysts containing bradyzoites. In addition, the isolated cysts in the filtrate were found to be contaminant-free, viable and able to infect healthy mice when introduced orally; which, mimics the natural infectivity pathway.
    Matched MeSH terms: Toxoplasmosis, Animal/parasitology*
  9. Chew WK, Wah MJ, Ambu S, Segarra I
    Exp Parasitol, 2012 Jan;130(1):22-5.
    PMID: 22027550 DOI: 10.1016/j.exppara.2011.10.004
    Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.
    Matched MeSH terms: Toxoplasmosis, Animal/parasitology*
  10. Rahmah N, Khairul Anuar A
    Biochem Biophys Res Commun, 1992 Dec 15;189(2):640-4.
    PMID: 1472034
    Mice were chronically infected with cysts of ME49 strain of Toxoplasma gondii. At different periods post-infection, their spleens were removed and single cell suspensions were made. Lymphocyte transformation experiments were performed on the lymphocyte suspensions using three different kinds of antigens of ME49 strain of T. gondii, namely soluble, excretory/secretory and cystic forms. The results showed that the pattern of lymphocyte responsiveness was dependent on the kind of antigen employed for induction of the blastogenesis. Using soluble and cystic forms of the antigen, different periods of lymphocyte suppression and lymphocyte proliferation were demonstrated. However, with the use of excretory/secretory antigen, no significant suppression of lymphocyte stimulation was noted throughout the course of infection. Thus excretory/secretory antigen may be the best form of antigen for stimulation of the cell-mediated immune response and hence it appears to be a good candidate for vaccine in toxoplasmosis.
    Matched MeSH terms: Toxoplasmosis, Animal/immunology*
  11. Rahmah N, Anuar AK
    Biochem Biophys Res Commun, 1992 Aug 31;187(1):294-8.
    PMID: 1520310
    C57BL/6 mice were orally infected with different doses of cysts of ME49 strain of Toxoplasma gondii to produce groups of acutely and chronically infected mice. Sera were obtained at different periods post-infection. SDS-PAGE was ran with excretory/secretory antigens of ME49 and RH strains of T. gondii, followed by Western blot analyses using the above sera and anti- IgA, IgM, IgG as conjugates. The SDS-PAGE profiles of the two antigens were similar. However the antigenic bands showed variations in all blots, most evidently in IgA blots of chronic sera. IgG blots showed greatest similarities in reactive bands. In IgM blots, more common bands were shown in chronic sera than in acute sera. Variations and similarities in prominence of some bands and time of their appearance were also noted, especially in IgM and IgG blots of chronic sera. Thus antigenic variations and similarities are present in excretory/secretory products of different strains of T. gondii.
    Matched MeSH terms: Toxoplasmosis, Animal/immunology*
  12. Dorny P, Van Aken D
    Ann Trop Med Parasitol, 1992 Feb;86(1):83-5.
    PMID: 1616398
    Matched MeSH terms: Toxoplasmosis, Animal/epidemiology*
  13. Suresh K, Mak JW, Yong HS
    PMID: 1822869
    Thirty in vitro serial passages of Toxoplasman gondii cultures in Vero cell line performed once in every five days had a mean increase in parasite count of 74.4 +/- 14.8 times from that of initial counts. Long term cultures in Vero cell line did not alter the virulence of the parasite. The good correlation (r = 0.99) between the IFA titer and ELISA OD values using the parasite antigens from in vitro sources indicates that long term maintenance of T. gondii in culture does not affect significantly the ability to recognize antibodies to surface and soluble antigens. The results also show that soluble antigens containing host cells can be directly used for immunodiagnostic purposes without purification. The in vitro maintenance of T. gondii is safer and cheaper when compared to the in vivo method.
    Matched MeSH terms: Toxoplasmosis, Animal/diagnosis*
  14. Rajamanickam C, Cheah TS, Paramasvaran S
    Trop Anim Health Prod, 1990 Feb;22(1):61-2.
    PMID: 2321262
    Matched MeSH terms: Toxoplasmosis, Animal/epidemiology*
  15. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Nordin N, Zasmy Unyah N, Alhassan Abdullahi S, et al.
    PMID: 32635389 DOI: 10.3390/ijerph17134809
    Toxoplasmosis is a disease caused by the protozoan parasite Toxoplasma gondii (T. gondii). Human toxoplasmosis seroprevalence in Malaysia has increased since it was first reported in 1973 as shown in previous reviews of 1991 and 2007. However, over a decade since the last review, comprehensive data on toxoplasmosis in Malaysia is lacking. This work aimed at reviewing articles on toxoplasmosis research in Malaysia in order to identify the research gaps, create public awareness, and efforts made so far and proffer management options on the disease. The present review examines the available published research articles from 2008 to 2018 related to toxoplasmosis research conducted in Malaysia. The articles reviewed were retrieved from nine credible databases such as Web of Science, Google Scholar, ScienceDirect, PubMed, Scopus, Springer, Wiley online library, Ovid, and Cochrane using the keywords; Malaysia, toxoplasmosis, Toxoplasma gondii, toxoplasma encephalitis, seroprevalence, human immunodeficiency virus (HIV) patients, pregnant women, genotype strain, anti-toxoplasma antibodies, felines, and vaccine. The data highlighted seropositive cases from healthy community members in Pangkor Island (59.7%) and among migrant workers (57.4%) at alarming rates, as well as 42.5% in pregnant women. Data on animal seroprevalence were limited and there was no information on cats as the definitive host. Genetic characterization of Toxoplasma gondii from HIV patients; pregnant women, and domestic cats is lacking. This present review on toxoplasmosis is beneficial to researchers, health workers, animal health professionals, and policymakers. Therefore, attention is required to educate and enlighten health workers and the general public about the risk factors associated with T. gondii infection in Malaysia.
    Matched MeSH terms: Toxoplasmosis, Animal/epidemiology*
  16. Sabri AR, Hassan L, Sharma RSK, Noordin MM
    Trop Biomed, 2019 Sep 01;36(3):604-609.
    PMID: 33597482
    Toxoplasmosis is a worldwide zoonosis caused by the protozoa Toxoplasma gondii which affects human and animals. Village chickens (Gallus domesticus) most commonly known as Ayam Kampung or free-range chickens, have been suggested to play a role in the epidemiology of toxoplasmosis. This study determines the presence of T. gondii in the village chicken populations in two states of Malaysia. A total of 50 serum samples from the chickens from Selangor (n=20) and Melaka (n=30) were collected and analysed using commercial serological kits. T. gondii antigen was detected in 20% (Selangor 30%; Melaka 13%) samples using ELISA test and anti-T. gondii antibody was detected in all positive ELISA samples using the indirect haemagglutination test (IHAT). Histopathological examination revealed tissue changes such as inflammation and degeneration in brain and liver of seropositive chickens. This is the first report of T. gondii infection in the village chickens in Malaysia.
    Matched MeSH terms: Toxoplasmosis, Animal/epidemiology*
  17. Xia NB, Lu Y, Zhao PF, Wang CF, Li YY, Tan L, et al.
    Trop Biomed, 2020 Jun 01;37(2):489-498.
    PMID: 33612818
    Toxoplasma gondii, a ubiquitous pathogen that infects nearly all warm-blooded animals and humans, can cause severe complications to the infected people and animals as well as serious economic losses and social problems. Here, one local strain (TgPIG-WH1) was isolated from an aborted pig fetus, and the genotype of this strain was identified as ToxoDB #3 by the PCR RFLP typing method using 10 molecular markers (SAG1, SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, C22-8, C29-2 and Apico). A comparison of the virulence of this isolate with other strains in both mice and piglets showed that TgPIG-WH1 was less virulent than type 1 strain RH and type 2 strain ME49 in mice, and caused similar symptoms to those of ME49 such as fever in piglets. Additionally, in piglet infection with both strains, the TgPIG-WH1 caused a higher IgG response and more severe pathological damages than ME49. Furthermore, TgPIG-WH1 caused one death in the 5 infected piglets, whereas ME49 did not, suggesting the higher virulence of TgPIG-WH1 than ME49 during piglet infection. Experimental infections indicate that the virulence of TgPIG-WH1 relative to ME49 is weaker in mice, but higher in pigs. This is probably the first report regarding a ToxoDB #3 strain from pigs in Hubei, China. These data will facilitate the understanding of genetic diversity of Toxoplasma strains in China as well as the prevention and control of porcine toxoplasmosis in the local region.
    Matched MeSH terms: Toxoplasmosis, Animal/parasitology*
  18. Loh FK, Nathan S, Chow SC, Fang CM
    Pathog Glob Health, 2021 09;115(6):392-404.
    PMID: 33525974 DOI: 10.1080/20477724.2021.1881369
    The proficiency of Salmonella Typhi to induce cell-mediated immunity has allowed its exploitation as a live vector against the obligate intracellular protozoan Toxoplasma gondii. T. gondii vaccine research is of great medical value due to the lack of a suitable toxoplasmosis vaccine. In the present work, we integrated T. gondii antigen into a growth-dependent chromosome locus guaBA of S. Typhi CVD910 strain to form recombinant S. Typhi monovalent CVD910-SAG1 expressed T. gondii SAG1 antigen and monovalent CVD910-GRA2 expressed T. gondii GRA2 antigen. Furthermore, a low-copy stabilized recombinant plasmid encoding SAG1 antigen was transformed into CVD910-GRA2 to form bivalent CVD910-GS strain. An osmolarity-regulated promoter was also incorporated to control the gene transcription, whereas clyA export protein was included to translocate the antigen out of the cytoplasm. Both CVD910-GRA2 and CVD910-GS displayed healthy growth fitness and readily expressed the encoded T. gondii antigens. When administered in vivo, CVD910-GS successfully induced both humoral and cellular immunity in the immunized BALB/c mice, and extended mice survival against virulent T. gondii. In particular, the mice immunized with bivalent CVD910-GS presented the highest titers of IgG, percentages of CD4+ T, CD8+ T, B cells and memory T cells, and total IgG+ memory B cells as compared to the CVD910-GRA2 and control strains. The CVD910-GS group also generated mixed Th1/Th2 cytokine profile with secretions of IFN-ɣ, IL-2 and IL-10. This study demonstrated the importance of enhancing live vector fitness to sustain heterologous antigen expression for eliciting robust immune responses and providing effective protection against pathogen.
    Matched MeSH terms: Toxoplasmosis, Animal*
  19. Rahumatullah A, Khoo BY, Noordin R
    Exp Parasitol, 2012 Jun;131(2):231-8.
    PMID: 22561042 DOI: 10.1016/j.exppara.2012.04.009
    Molecular methods are used increasingly for the detection of Toxoplasma gondii infection. This study developed a rapid, sensitive, and specific conventional triplex PCR for the detection of the B1 gene and ITS1 region of T. gondii using newly designed primers and an internal control based on the Vibrio cholerae HemM gene. The annealing temperature and concentrations of the primers, MgCl(2), and dNTPs were optimized. Two sets of primers (set 1 and 2) were tested, which contained different segments of the T. gondii B1 gene, 529 repeat region and ITS1 region. A series of sensitivity tests were performed using parasite DNA, whole parasites, and spiked human body fluids. Specificity tests were performed using DNA from common protozoa and bacteria. The newly developed assay based on set 2 primers was found to be specific and sensitive. The test was capable of detecting as little as 10 pg T. gondii DNA, 10(4) tachyzoites in spiked body fluids, and T. gondii DNA in the organ tissues of experimentally infected mice. The assay developed in this study will be useful for the laboratory detection of T. gondii infection.
    Matched MeSH terms: Toxoplasmosis, Animal/diagnosis*; Toxoplasmosis, Animal/parasitology
  20. Khan AH, Noordin R
    Eur J Clin Microbiol Infect Dis, 2020 Jan;39(1):19-30.
    PMID: 31428897 DOI: 10.1007/s10096-019-03680-2
    Infection by Toxoplasma gondii is prevalent worldwide. The parasite can infect a broad spectrum of vertebrate hosts, but infection of fetuses and immunocompromised patients is of particular concern. Easy-to-perform, robust, and highly sensitive and specific methods to detect Toxoplasma infection are important for the treatment and management of patients. Rapid diagnostic methods that do not sacrifice the accuracy of the assay and give reproducible results in a short time are highly desirable. In this context, rapid diagnostic tests (RDTs), especially with point-of-care (POC) features, are promising diagnostic methods in clinical microbiology laboratories, especially in areas with minimal laboratory facilities. More advanced methods using microfluidics and sensor technology will be the future trend. In this review, we discuss serological and molecular-based rapid diagnostic tests for detecting Toxoplasma infection in humans as well as animals.
    Matched MeSH terms: Toxoplasmosis, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links