Displaying all 5 publications

Abstract:
Sort:
  1. Janbaz KH, Zaeem Ahsan M, Saqib F, Imran I, Zia-Ul-Haq M, Abid Rashid M, et al.
    PLoS One, 2015;10(3):e0118605.
    PMID: 25786248 DOI: 10.1371/journal.pone.0118605
    Pyrus pashia Buch.-Ham. ex D. Don. has been used conventionally by many communities in the Himalayan region for the management of gastrointestinal, respiratory, and vascular complications. Set against this background, this study was carried out to justify the scientific basis to validate folkloric uses of fruits of Pyrus pashia Buch.-Ham. ex D. Don. (Pp.Cr) in traditional systems of medicine.
    Matched MeSH terms: Trachea/metabolism
  2. Cheong KB, Cheong SK, Boo NY
    Malays J Pathol, 1996 Dec;18(2):101-5.
    PMID: 10879230
    This study aimed to determine the role of surfactant protein A (SP-A) in the formation of stable microbubble in tracheal aspirates. Our results showed that as the concentration of anti SP-A antibodies added to tracheal aspirate specimens increased, the number of stable microbubble formed in the specimen decreased. The correlation between stable microbubble counts and the SP-A levels in the tracheal aspirates was good, r = 0.85, p < 0.05. This study suggests that SP-A plays an important role in stable microbubble formation. Measurement of small stable microbubbles is thus a useful bedside test for predicting the SP-A activity in the tracheal aspirates and in indirect measurement of lung maturity.
    Matched MeSH terms: Trachea/metabolism*
  3. Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB
    Int J Pediatr Otorhinolaryngol, 2005 Nov;69(11):1489-95.
    PMID: 15941595
    Treatment and management of congenital as well as post-traumatic trachea stenosis remains a challenge in pediatric surgery. The aim of this study was to reconstruct a trachea with human nasal septum chondrocytes by using the combination of biodegradable hydrogel and non-biodegradable high-density polyethylene (HDP) as the internal predetermined shape scaffold.
    Matched MeSH terms: Trachea/metabolism
  4. Boo NY, Cheong KB, Cheong SK, Lye MS, Zulfiqar MA
    J Paediatr Child Health, 1997 Aug;33(4):329-34.
    PMID: 9323622
    OBJECTIVES: To compare the overall accuracy of the stable microbubble test (SM test) with measurement of level of surfactant protein A (SP-A) of tracheal aspirate for the diagnosis of respiratory distress syndrome (RDS).

    METHODOLOGY: Tracheal aspirates were obtained from neonates on ventilatory support. The SM test was carried out on specimens of tracheal aspirate immediately after collection. Levels of SP-A in tracheal aspirates were determined by enzyme-linked immunosorbent assay (ELISA) method. The results of the SM test and SP-A level of the tracheal aspirates were compared against the clinical diagnosis of RDS based on clinical, radiological and bacteriological findings.

    RESULTS: Both the median microbubble counts (6 microbubbles/mm2, range = 0-90) and median SP-A levels (100 micrograms/L, range = 0-67447) of infants with RDS were significantly lower than those of infants with no obvious lung pathology (P < 0.0001), and pneumonia (P < 0.0001). The SM test of tracheal aspirates had higher overall accuracy for the diagnosis of RDS than measurement of SP-A levels (94.6% vs 82.4%). When the receiver operating characteristic (ROC) curves of both tests for RDS were compared, the area under the ROC curve of the SM test was larger (0.9689) than that of the SP-A method (0.8965).

    CONCLUSIONS: This study showed that the SM test of tracheal aspirate was a useful bedside diagnostic test for RDS. It could be carried out at any time after birth on infants requiring ventilatory support.

    Matched MeSH terms: Trachea/metabolism*
  5. Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A
    Molecules, 2021 Nov 06;26(21).
    PMID: 34771136 DOI: 10.3390/molecules26216724
    The normal function of the airway epithelium is vital for the host's well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.
    Matched MeSH terms: Trachea/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links