METHODS: KP metabolites and cytokines in plasma samples of patients with dengue infection (dengue without warning signs [DWS-], dengue with warning signs [DWS+], or severe dengue) were analyzed. Cytokines (interferon gamma [IFN-ɣ], tumor necrosis factor, interleukin 6, CXCL10/interferon-inducile protein 10 [IP-10], interleukin 18 [IL-18], CCL2/monocyte chemoattractant protein-1 [MCP-1], and CCL4/macrophage inflammatory protein-1beta [MIP-1β] were assessed by a Human Luminex Screening Assay, while KP metabolites (tryptophan, kynurenine, anthranilic acid [AA], picolinic acid, and quinolinic acid) were assessed by ultra-high-performance liquid chromatography and Gas Chromatography Mass Spectrophotometry [GCMS] assays.
RESULTS: Patients with DWS+ had increased activation of the KP where kynurenine-tryptophan ratio, anthranilic acid, and picolinic acid were elevated. These patients also had higher levels of the cytokines IFN-ɣ, CXCL10, CCL4, and IL-18 than those with DWS-. Further receiver operating characteristic analysis identified 3 prognostic biomarker candidates, CXCL10, CCL2, and AA, which predicted patients with higher risks of developing DWS+ with an accuracy of 97%.
CONCLUSIONS: The data suggest a unique biochemical signature in patients with DWS+. CXCL10 and CCL2 together with AA are potential prognostic biomarkers that discern patients with higher risk of developing DWS+ at earlier stages of infection.
PATIENTS AND METHODS: A direct observational study was conducted in which plasma levels of drug and amino acids (tryptophan, tyrosine and phenylalanine) were monitored during quinine treatment of malaria patients with Plasmodium falciparum infections.
RESULTS: Consistent with competition for uptake from plasma into cells, plasma tryptophan and tyrosine levels increased ≥2-fold during quinine therapy. Plasma quinine levels in individual plasma samples were significantly and positively correlated with tryptophan and tyrosine in the same samples. Control studies indicated no effect on phenylalanine. Chloroquine treatment of Plasmodium vivax-infected patients did not affect plasma tryptophan or tyrosine. During quinine treatment, plasma tryptophan was significantly lower (and quinine significantly higher) in patients experiencing adverse drug reactions.
CONCLUSIONS: Plasma quinine levels during therapy are related to patient tryptophan and tyrosine levels, and these interactions can determine patient responses to quinine. The study also highlights the potential for extrapolating insights directly from the yeast model to human malaria patients.
METHOD: In this cross-sectional study, HIV-infected participants receiving suppressive ART for a minimum of 12 months were recruited from the University Malaya Medical Centre (UMMC), Malaysia. Stored plasma was analyzed for CMV, VZV, HSV-1 and HSV-2 IgG antibody levels, immune activation markers (interleukin-6, interferon-γ, neopterin and sCD14), kynurenine and tryptophan concentrations. The influence of the number of HHV co-infection and K/T ratio on CD4 T-cell recovery was assessed using multivariate Poisson regression.
RESULTS: A total of 232 HIV-infected participants were recruited and all participants were seropositive for at least one HHV; 96.1% with CMV, 86.6% with VZV, 70.7% with HSV-1 and 53.9% with HSV-2. K/T ratio had a significant positive correlation with CMV (rho = 0.205, p = 0.002), VZV (rho = 0.173, p = 0.009) and a tendency with HSV-2 (rho = 0.120, p = 0.070), with CMV antibody titer demonstrating the strongest modulating effect on K/T ratio among the four HHVs assessed in SOM analysis. In multivariate analysis, higher K/T ratio (p = 0.03) and increasing number of HHV co-infections (p<0.001) were independently associated with poorer CD4 T-cell recovery following 12 months of ART initiation.
CONCLUSION: Multiple HHV co-infections are common among ART-treated HIV-infected participants in the developing country setting and associated with persistent immune activation and poorer CD4 T-cell recovery.