Displaying all 13 publications

Abstract:
Sort:
  1. Son R, Rusul G, Samuel L, Yuherman, Senthil S, Rasip A, et al.
    J Appl Microbiol, 1998 Dec;85(6):1073-7.
    PMID: 9871327
    Four Vibrio cholerae O139 Bengal strains isolated from surface water were characterized by antibiotic resistance, plasmid profile, presence of cholera toxin gene and random amplification of polymorphic DNA (RAPD) analysis. All four strains exhibit multiple resistance towards the antibiotics tested with a multiple antibiotic resistance index of 0.5-0.66, and harboured a 2.0 MDa non-conjugative plasmid. The Vibrio cholerae O139 Bengal were positive for the cholera toxin gene. Antibiotyping and random amplification of polymorphic DNA analysis with four primers proved to be useful in discriminating the isolates. RAPD proved to be more sensitive. These results reveal that there is significant genetic diversity among the Vibrio cholerae O139 Bengal strains studied.
    Matched MeSH terms: Vibrio cholerae/classification
  2. Ohashi M, Terayama T, Ushioda H, Kudoh Y, Tsuno M, Sakai S
    Microbiol. Immunol., 1981;25(6):613-6.
    PMID: 7278707
    Matched MeSH terms: Vibrio cholerae/classification
  3. Tan KK, Sin KS, Ng AJ, Yahya H, Kaur P
    Singapore Med J, 1994 Dec;35(6):648-9.
    PMID: 7761898
    Non-O1 vibrio cholerae infections are associated with sporadic cases of gastroenteritis and extraintestinal infections. Septicaemia due to non-O1 vibrio cholerae is rare and are mainly reported in adults, particularly in immunocompromised patients. We report a case of non-O1 vibrio cholerae septicaemia and gastroenteritis in an 8-year-old child. The patient presented with bloody diarrhoea, fever and severe dehydration. Non-O1 vibrio cholerae were isolated from blood and stool cultures. The clinical course was uneventful after starting appropriate rehydration and supportive therapy.
    Matched MeSH terms: Vibrio cholerae/classification*
  4. Iyer L, Vadivelu J
    Asia Pac J Public Health, 2006;18(3):33-41.
    PMID: 17153080
    The genetic diversity or clonality among Vibrio cholerae O1, O139 and non-O1/ non-O139 of clinical and environmental origin using ribotyping and PFGE was performed in order to ascertain the public health implications of the different genotypes circulating within the Malaysian environment. Using an in-house typing scheme, of the 214 strains included, 202 strains were isolated locally between 1992 and 1998, seven were obtained from Bangladesh and five were reference strains. Amongst the 176 El Tor O1 strains, 152 clinical strains demonstrated five ribotypes--E1a, E1b, E2a, E3 and E1c. E1b was the most predominant ribotype demonstrated by 84% of the El Tor O1 strains and was present in all years demonstrating that this strain was intrinsic to Malaysia. PFGE analysis of these strains demonstrated minimal variation amongst the 15 PFGE profiles obtained. Ribotpye E2a amongst five clinical and two environmental O1 strains, were from one location and had previously been reported in Indonesia and the Philippines, thus demonstrating strong evidence that these strains may have been imported into Malaysia. Among Vibrio cholerae O139 strains, 91.7% were of ribotype A1a similar to the original O139, while two others were of ribotype A1b and one of A1e, corresponding to ribotypes 1, 2 and 3 of Dalsgaard and colleagues' scheme for O139 strains. PFGE analysis demonstrated that 89% of ribotype A1a could be differentiated into three PFGE genotypes which were very closely related. The eight non-O1/non-O139 serogroup strains were heterogeneous in both ribotype and PFGE patterns.
    Matched MeSH terms: Vibrio cholerae/classification
  5. Vadivelu J, Iyer L, Kshatriya BM, Puthucheary SD
    Epidemiol Infect, 2000 Feb;124(1):25-30.
    PMID: 10722126
    Forty-three clinical strains of V. cholerae O1 biotype E1 Tor were isolated between 3 May and 10 June 1998 during an outbreak in the metropolitan area of Kuala Lumpur and its suburbs. With the exception of three Inaba strains that were restricted to three members of a family, all the others belonged to the Ogawa serotype. The strains were analysed for clonality using ribotyping and pulsed-field gel electrophoresis (PFGE). Two ribotypes, V/B21a and B27, were identified among 40 Ogawa isolates using BglI restriction endonuclease. Ribotype V/B21a has been described previously from Taiwan and Colombia and several Asian countries while B27 has been reported among isolates from Senegal. The three Inaba strains belonged to one ribotype, designated type A, not previously reported. PFGE analysis using NotI revealed that all isolates within a ribotype had identical profiles demonstrating clonality amongst the strains. Dice coefficient analysis of the two Ogawa genotypes revealed 89% similarity on ribotype patterns and 91.3% on PFGE profiles. Ribotype V/B21a isolates were associated with cases from dispersed areas of Kuala Lumpur and its suburbs while ribotype B27 was restricted to cases from one particular area suggesting a common-source outbreak.
    Matched MeSH terms: Vibrio cholerae/classification
  6. Teh CS, Chua KH, Thong KL
    J Biomed Biotechnol, 2010;2010:817190.
    PMID: 20671932 DOI: 10.1155/2010/817190
    Molecular analysis of Malaysian Vibrio cholerae was carried out using a multiple-locus variable-number tandem repeat analysis (MLVA) assay based on 7 loci of V. cholerae. The discriminatory ability of the assay was compared with pulsed-field gel electrophoresis (PFGE) using 43 Malaysian V. cholerae isolated from various sources. In addition, the virulotypes of the strains were determined. Based on MLVA, 38 allelic profiles were obtained (F = 0.63) while PFGE generated 35 pulsotypes (F = 0.71). Simpson's index of diversity for different VNTR loci ranged from 0.59 to 0.92. The combined loci increased the discriminatory index to 0.99 which was comparable with PFGE (D = 0.99). Most of the environmental non-O1/non-O139 strains harbored rtxA, rstR, toxR, and hlyA only, and the virulotype of this serogroup was significantly different (P < .01) from clinical/environmental O1 and environmental O139 strains. In conclusion, the MLVA assay developed in this study was a useful genotyping tool with comparable discriminatory power with PFGE. In addition, the combination of the two approaches can further distinguish the strains from different sources and geographical regions of isolation.
    Matched MeSH terms: Vibrio cholerae/classification*
  7. Mahalingam S, Cheong YM, Kan S, Yassin RM, Vadivelu J, Pang T
    J Clin Microbiol, 1994 Dec;32(12):2975-9.
    PMID: 7883885
    Isolates of Vibrio cholerae O1 El Tor from two well-defined cholera outbreaks in Malaysia were analyzed by using pulsed-field gel electrophoresis (PFGE). Isolates from sporadic cases occurring during the same time period were also studied. Digestion of chromosomal DNA from these isolates of V. cholerae O1 with restriction endonucleases NotI (5'-GCGGCCGC-3') and SfiI (5'-GGCCNNNN-3'), followed by PFGE, produced restriction endonuclease analysis (REA) patterns consisting of 13 to 24 bands (ranging in size from 46 to 398 kbp). Analysis of the REA patterns generated by PFGE after digestion with NotI and SfiI suggested the clonal nature and close genetic identity of the isolates obtained during each of the two outbreaks (Dice coefficient, 0.93 to 1.0). Although they had very similar REA patterns, the two outbreak clones were not identical. Isolates of V. cholerae O1 from sporadic cases, on the other hand, appeared to be much more heterogeneous (five different REA patterns detected in the five isolates tested; Dice coefficient, 0.31 to 0.81) than those obtained during the two outbreaks. We conclude that PFGE of V. cholerae O1 chromosomal DNA digested with infrequently cutting restriction endonucleases is a useful method for molecular typing of V. cholerae isolates for epidemiological purposes.
    Matched MeSH terms: Vibrio cholerae/classification*
  8. Ahmed SA, Raabe CA, Cheah HL, Hoe CH, Rozhdestvensky TS, Tang TH
    Am J Trop Med Hyg, 2019 Jun;100(6):1328-1334.
    PMID: 30963989 DOI: 10.4269/ajtmh.18-0525
    The diarrheal disease "cholera" is caused by Vibrio cholerae, and is primarily confined to endemic regions, mostly in Africa and Asia. It is punctuated by outbreaks and creates severe challenges to public health. The disease-causing strains are most-often members of serogroups O1 and O139. PCR-based methods allow rapid diagnosis of these pathogens, including the identification of their biotypes. However, this necessitates the selection of specific target sequences to differentiate even the closely related biotypes of V. cholerae. Oligonucleotides for selective amplification of small RNA (sRNA) genes that are specific to these V. cholerae subtypes were designed. The resulting multiplex PCR assay was validated using V. cholerae cultures (i.e., 19 V. cholerae and 22 non-V. cholerae isolates) and spiked stool samples. The validation using V. cholerae cultures and spiked stool suspensions revealed detection limits of 10-100 pg DNA per reaction and 1.5 cells/mL suspension, respectively. The multiplex PCR assay that targets sRNA genes for amplification enables the sensitive and specific detection, as well as the differentiation of V. cholerae-O1 classical, O1 El Tor, and O139 biotypes. Most importantly, the assay enables fast and cheaper diagnosis compared with classic culture-based methods.
    Matched MeSH terms: Vibrio cholerae/classification*
  9. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
    Matched MeSH terms: Vibrio cholerae/classification
  10. Iyer L, Vadivelu J, Puthucheary SD
    Epidemiol Infect, 2000 Aug;125(1):27-34.
    PMID: 11057956
    Eighty-four strains of Vibrio cholerae O1, O139 and non-O1/non-O139 from clinical and environmental sources were investigated for the presence of the toxin co-regulated pilus gene, tcpA, the virulence cassette genes ctxA, zot, ace and cep and also for their ability to elaborate haemolysin and protease. The ctxA and zot genes were detected using DNA-DNA hybridization while the ace, cep and tcpA genes were detected using PCR. Production of haemolysin and protease was detected using mammalian erythrocytes and an agar diffusion assay respectively. Analysis of their virulence profiles showed six different groups designated Type I to Type VI and the major distinguishing factor among these profiles was in the in vitro production of haemolysin and/or protease. Clinical O1, O139 and environmental O1 strains were similar with regard to presence of the virulence cassette genes. All environmental O1 strains with the exception of one were found to possess ctxA, zot and ace giving rise to the probability that these strains may actually be of clinical origin. One strain which had only cep but none of the toxin genes may be a true environmental isolate. The virulence cassette and colonization factor genes were absent in all non-O1/non-O139 environmental strains but production of both the haemolysin and protease was present, indicating that these may be putative virulence factors. These findings suggest that with regard to its pathogenic potential, only strains of the O1 and O139 serogroup that possess the tcpA gene which encodes the phage receptor, have the potential to acquire the CTX genetic element and become choleragenic.
    Matched MeSH terms: Vibrio cholerae/classification
  11. Shuan Ju Teh C, Thong KL, Osawa R, Heng Chua K
    J Gen Appl Microbiol, 2011;57(1):19-26.
    PMID: 21478644
    Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.
    Matched MeSH terms: Vibrio cholerae/classification*
  12. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P
    J Med Microbiol, 2011 Apr;60(Pt 4):481-485.
    PMID: 21183596 DOI: 10.1099/jmm.0.027433-0
    Vibrio cholerae has caused severe outbreaks of cholera worldwide with thousands of recorded deaths annually. Molecular diagnosis for cholera has become increasingly important for rapid detection of cholera as the conventional methods are time-consuming and labour intensive. However, traditional PCR tests still require cold-chain transportation and storage as well as trained personnel to perform, which makes them user-unfriendly. The aim of this study was to develop a thermostabilized triplex PCR test for cholera which is in a ready-to-use form and requires no cold chain. The PCR test specifically detects both toxigenic and non-toxigenic strains of V. cholerae based on the cholera toxin A (ctxA) and outer-membrane lipoprotein (lolB) genes. The thermostabilized triplex PCR also incorporates an internal amplification control that helps to check for PCR inhibitors in samples. PCR reagents and the specific primers were lyophilized into a pellet form in the presence of trehalose, which acts as an enzyme stabilizer. The triplex PCR was validated with 174 bacteria-spiked stool specimens and was found to be 100 % sensitive and specific. The stability of the thermostabilized PCR was evaluated using the Q10 method and it was found to be stable for approximately 7 months at 24 °C. The limit of detection of the thermostabilized triplex PCR assay was 2×10(4) c.f.u. at the bacterial cell level and 100 pg DNA at the genomic DNA level, comparable to conventional PCR methods. In conclusion, a rapid thermostabilized triplex PCR assay was developed for detecting toxigenic and non-toxigenic V. cholerae which requires minimal pipetting steps and is cold chain-free.
    Matched MeSH terms: Vibrio cholerae/classification
  13. Teh CS, Suhaili Z, Lim KT, Khamaruddin MA, Yahya F, Sajili MH, et al.
    Emerg Infect Dis, 2012 Jul;18(7):1177-9.
    PMID: 22709679 DOI: 10.3201/eid1807.111656
    A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.
    Matched MeSH terms: Vibrio cholerae/classification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links