Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Son R, Rusul G, Samuel L, Yuherman, Senthil S, Rasip A, et al.
    J Appl Microbiol, 1998 Dec;85(6):1073-7.
    PMID: 9871327
    Four Vibrio cholerae O139 Bengal strains isolated from surface water were characterized by antibiotic resistance, plasmid profile, presence of cholera toxin gene and random amplification of polymorphic DNA (RAPD) analysis. All four strains exhibit multiple resistance towards the antibiotics tested with a multiple antibiotic resistance index of 0.5-0.66, and harboured a 2.0 MDa non-conjugative plasmid. The Vibrio cholerae O139 Bengal were positive for the cholera toxin gene. Antibiotyping and random amplification of polymorphic DNA analysis with four primers proved to be useful in discriminating the isolates. RAPD proved to be more sensitive. These results reveal that there is significant genetic diversity among the Vibrio cholerae O139 Bengal strains studied.
    Matched MeSH terms: Vibrio cholerae/classification; Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification
  2. Ohashi M, Terayama T, Ushioda H, Kudoh Y, Tsuno M, Sakai S
    Microbiol. Immunol., 1981;25(6):613-6.
    PMID: 7278707
    Matched MeSH terms: Vibrio cholerae/classification; Vibrio cholerae/isolation & purification; Vibrio cholerae/physiology*
  3. NOBLE JE
    J R Army Med Corps, 1964;110:15-21.
    PMID: 14125192
    Matched MeSH terms: Vibrio cholerae*
  4. Yu CY, Ang GY, Yean CY
    Chem Commun (Camb), 2013 Mar 11;49(20):2019-21.
    PMID: 23370051 DOI: 10.1039/c3cc39144b
    We developed a multiplex enzyme-based electrochemical genosensor for sequence-specific detection of multiplex linear-after-the-exponential-PCR amplicons that targeted toxigenic Vibrio cholerae O1 and O139 using novel screen-printed gold electrode bisensors.
    Matched MeSH terms: Vibrio cholerae O1/genetics; Vibrio cholerae O1/isolation & purification*; Vibrio cholerae O139/genetics; Vibrio cholerae O139/isolation & purification*
  5. Yap KL, Hu KN
    PMID: 19058604
    The importance of bacteria-suspending media and fingertip positions on the survival of Vibrio cholerae on human fingertips were examined. Vibrios were suspended in phosphate-buffered saline (PBS), PBS with albumin, and PBS with agarose. Each type of preparation was inoculated on the fingerpads, the hyponychia, or the eponychia and lateral nail grooves of the fourth, third and second fingers of a volunteer's hand. The last finger inoculated was immediately washed with PBS and the washing collected for examination ("0 minute" exposure). The third and fourth inoculated fingers were likewise washed for examination 2 and 5 minutes later, respectively. The vibrios obtained from the washings were enumerated by culture. For each of the different groups, which consisted of a different inoculated fingertip position, bacteria-suspending medium and exposure period of 2 or 5 minutes, the proportion of replicate inoculated fingers which retained viable vibrios (isolation rate) and the mean number of surviving vibrios, as a percentage of the inoculated vibrios at "0 minute exposure" (survival rate) were as follows: finger pads: vibrios in PBS, 2 minutes post-inoculation (isolation rate, 25%; mean survival rate, 0.002%); 5 minutes post-inoculation (isolation rate, 0%; mean survival rate, 0%). PBS-albumin: 2 minutes post-inoculation (60%, 0.004%); 5 minutes post-inoculation (40%, 0.03%). PBS-agarose: 2 minutes post-inoculation (100%, 24%); 5 minutes post-inoculation (38%, 0.005%). Lateral nail grooves and eponychia: PBS: 2 minutes post-inoculation (100%, 2.2%); 5 minutes post-inoculation (44%, 0.2%). PBS-agarose: 2 minutes post-inoculation (100%, 32%); 5 minutes post-inoculation (100%, 0.7%). Hyponychia: PBS: 2 minutes post-inoculation (100%, 8%); 5 minutes post-inoculation (100%, 0.2%). PBS-agarose: 2 minutes post-inoculation (100%, 46%); 5 minutes post-inoculation (100%, 8%). The results show that vibrios in moisture-retaining medium (PBS-agarose) and inoculated on a sheltered fingertip locations (hyponychium) have the best survival rates. However, the high survival rate was maintained briefly.
    Matched MeSH terms: Vibrio cholerae/isolation & purification; Vibrio cholerae/physiology*
  6. Yu CY, Ang GY, Chua AL, Tan EH, Lee SY, Falero-Diaz G, et al.
    J Microbiol Methods, 2011 Sep;86(3):277-82.
    PMID: 21571011 DOI: 10.1016/j.mimet.2011.04.020
    Cholera is a communicable disease caused by consumption of contaminated food and water. This potentially fatal intestinal infection is characterised by profuse secretion of rice watery stool that can rapidly lead to severe dehydration and shock, thus requiring treatment to be given immediately. Epidemic and pandemic cholera are exclusively associated with Vibrio cholerae serogroups O1 and O139. In light of the need for rapid diagnosis of cholera and to prevent spread of outbreaks, we have developed and evaluated a direct one-step lateral flow biosensor for the simultaneous detection of both V. cholerae O1 and O139 serogroups using alkaline peptone water culture. Serogroup specific monoclonal antibodies raised against lipopolysaccharides (LPS) were used to functionalize the colloidal gold nanoparticles for dual detection in the biosensor. The assay is based on immunochromatographic principle where antigen-antibody reaction would result in the accumulation of gold nanoparticles and thus, the appearance of a red line on the strip. The dry-reagent dipstick format of the biosensor ensure user-friendly application, rapid result that can be read with the naked eyes and cold-chain free storage that is well-suited to be performed at resource-limited settings.
    Matched MeSH terms: Vibrio cholerae O1/immunology; Vibrio cholerae O1/isolation & purification*; Vibrio cholerae O139/immunology; Vibrio cholerae O139/isolation & purification*
  7. Norazah A, Zainuldin MT, Kamel AGM, Kamaliah MN, Taha AM
    Med J Malaysia, 2001 Mar;56(1):4-9.
    PMID: 11503295
    The detection of Vibrio cholerae 01 from the aquatic environment of Daro and Bintulu in Sarawak was carried out following an outbreak of cholera. Conventional culture methods and detection of ctx gene by polymerase chain reaction technique were carried out on 80 water samples. Only one sample was positive by culture methods while 8 were positive by PCR. DNA finger printing by pulsed-field gel electrophoresis showed that the clinical isolates in Daro and Bintulu were genetically identical while the environmental isolate was closely related. Recovery of Vibrio cholerae by culture method is poor and newer methods of detection should be developed.
    Matched MeSH terms: Vibrio cholerae/isolation & purification*
  8. Kurazono H, Yamasaki S, Ratchtrachenchai O, Nair GB, Takeda Y
    Microbiol. Immunol., 1996;40(4):303-5.
    PMID: 8709866
    Vibrio cholerae O139 isolated from different countries, as well as from different locations within a country, were examined using macrorestriction DNA analysis to determine the clonality of the O139 strains. NotI digests of genomic DNA of representative strains from Nepal, India, Bangladesh, China, Thailand, and Malaysia revealed very similar but not identical patterns. Examinations of the banding patterns generated by pulsed-field gel electrophoresis of strains isolated within countries revealed complete homogeneity. These results further reiterate the spread of an identical clone of V. cholerae O139 although it appears that genetic polymorphism among the O139 strains is becoming apparent.
    Matched MeSH terms: Vibrio cholerae/isolation & purification*
  9. Ng PP, Taha M
    Med J Malaysia, 1994 Jun;49(2):195.
    PMID: 8090106
    Matched MeSH terms: Vibrio cholerae/drug effects*
  10. Iyer L, Vadivelu J
    Asia Pac J Public Health, 2006;18(3):33-41.
    PMID: 17153080
    The genetic diversity or clonality among Vibrio cholerae O1, O139 and non-O1/ non-O139 of clinical and environmental origin using ribotyping and PFGE was performed in order to ascertain the public health implications of the different genotypes circulating within the Malaysian environment. Using an in-house typing scheme, of the 214 strains included, 202 strains were isolated locally between 1992 and 1998, seven were obtained from Bangladesh and five were reference strains. Amongst the 176 El Tor O1 strains, 152 clinical strains demonstrated five ribotypes--E1a, E1b, E2a, E3 and E1c. E1b was the most predominant ribotype demonstrated by 84% of the El Tor O1 strains and was present in all years demonstrating that this strain was intrinsic to Malaysia. PFGE analysis of these strains demonstrated minimal variation amongst the 15 PFGE profiles obtained. Ribotpye E2a amongst five clinical and two environmental O1 strains, were from one location and had previously been reported in Indonesia and the Philippines, thus demonstrating strong evidence that these strains may have been imported into Malaysia. Among Vibrio cholerae O139 strains, 91.7% were of ribotype A1a similar to the original O139, while two others were of ribotype A1b and one of A1e, corresponding to ribotypes 1, 2 and 3 of Dalsgaard and colleagues' scheme for O139 strains. PFGE analysis demonstrated that 89% of ribotype A1a could be differentiated into three PFGE genotypes which were very closely related. The eight non-O1/non-O139 serogroup strains were heterogeneous in both ribotype and PFGE patterns.
    Matched MeSH terms: Vibrio cholerae/classification; Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification
  11. Radu S, Vincent M, Apun K, Abdul-Rahim R, Benjamin PG, Yuherman, et al.
    Acta Trop, 2002 Aug;83(2):169-76.
    PMID: 12088858
    Bacterial resistance to various antimicrobial agents is common in area with high usage of antibiotics. In this study, the data on antimicrobial susceptibility patterns of Vibrio cholerae O1 from patients during an outbreak period was found to be high but variable rates of multidrug resistance. Thirty-two of 33 V. cholerae isolates harboured the tcp, ctx, zot and ace genes, suggesting their possible roles in the outbreak cases. We analyzed the molecular diversity of a total of 33 strains of V. cholerae O1 isolated from 33 patients between November 1997 and April 1998 using random amplified polymorphic DNA (RAPD) analysis. The 30 typable isolates could be separated into four major clusters containing 5, 17, 2 and 6 isolates, respectively. However, no particular RAPD pattern was predictive of a particular pattern of antibiotic susceptibility. The findings of this study showed that multiple clones seemed to be responsible for cases in the outbreaks in the study area.
    Matched MeSH terms: Vibrio cholerae/drug effects; Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification
  12. Teh CS, Chua KH, Thong KL
    J Biomed Biotechnol, 2010;2010:817190.
    PMID: 20671932 DOI: 10.1155/2010/817190
    Molecular analysis of Malaysian Vibrio cholerae was carried out using a multiple-locus variable-number tandem repeat analysis (MLVA) assay based on 7 loci of V. cholerae. The discriminatory ability of the assay was compared with pulsed-field gel electrophoresis (PFGE) using 43 Malaysian V. cholerae isolated from various sources. In addition, the virulotypes of the strains were determined. Based on MLVA, 38 allelic profiles were obtained (F = 0.63) while PFGE generated 35 pulsotypes (F = 0.71). Simpson's index of diversity for different VNTR loci ranged from 0.59 to 0.92. The combined loci increased the discriminatory index to 0.99 which was comparable with PFGE (D = 0.99). Most of the environmental non-O1/non-O139 strains harbored rtxA, rstR, toxR, and hlyA only, and the virulotype of this serogroup was significantly different (P < .01) from clinical/environmental O1 and environmental O139 strains. In conclusion, the MLVA assay developed in this study was a useful genotyping tool with comparable discriminatory power with PFGE. In addition, the combination of the two approaches can further distinguish the strains from different sources and geographical regions of isolation.
    Matched MeSH terms: Vibrio cholerae/classification*; Vibrio cholerae/genetics; Vibrio cholerae/pathogenicity*
  13. Teh CS, Suhaili Z, Lim KT, Khamaruddin MA, Yahya F, Sajili MH, et al.
    Emerg Infect Dis, 2012 Jul;18(7):1177-9.
    PMID: 22709679 DOI: 10.3201/eid1807.111656
    A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.
    Matched MeSH terms: Vibrio cholerae/classification*; Vibrio cholerae/drug effects; Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification; Vibrio cholerae O1/classification*; Vibrio cholerae O1/drug effects; Vibrio cholerae O1/genetics*; Vibrio cholerae O1/isolation & purification
  14. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
    Matched MeSH terms: Vibrio cholerae/classification; Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification*; Vibrio cholerae/pathogenicity
  15. Somarny WM, Mariana NS, Rozita R, Raha AR
    PMID: 15916081
    The cholera enterotoxin (CT) has been considered a major virulence factor of Vibrio cholerae. The accessory cholera enterotoxin (ace) gene is the third gene of V. cholerae virulence cassette. The gene coding for the Ace toxin was amplified from V. cholerae isolates producing a single band of 314 bp. The presence of ace gene was confirmed by hybridization as well as by sequencing. The gene was successfully expressed in Escherichia coli (LMG194) using expression, pBAD/Thio-TOPO vector. Optimal conditions for expression included choice of host strain, temperature used for culturing, and concentration of antibiotic and arabinose inducer. The Ace protein was obtained from the cell supernatant as a fusion protein with a molecular mass 34 kDa which was detected using an anti V5-HRP epitope tagged antibody.
    Matched MeSH terms: Vibrio cholerae/genetics*
  16. Lim VKE
    Med J Malaysia, 1993 Mar;48(1):1-2.
    PMID: 8341166
    Matched MeSH terms: Vibrio cholerae/isolation & purification
  17. Al-Fendi A, Shueb RH, Ravichandran M, Yean CY
    J Basic Microbiol, 2014 Oct;54(10):1036-43.
    PMID: 24532381 DOI: 10.1002/jobm.201300458
    Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.
    Matched MeSH terms: Vibrio cholerae O1/virology*
  18. Murugaiah C, Noor NZ, Mustafa S, Manickam R, Pattabhiraman L
    Microb Pathog, 2017 Apr;105:25-29.
    PMID: 28179117 DOI: 10.1016/j.micpath.2017.02.002
    Cholera, a severe form of gastroenteritis, is one of the most widespread diseases in developing countries. The mechanism of intestinal infection caused by V. cholerae O139 remains unclear. In order to explore some morphological aspects of its infection in the intestine including Peyer's patches, we investigated the V. cholerae O139 infection at intestinal site of the rabbit gut-loop model. The electron microscopic analysis revealed denuded mucosal surface with loss of microvilli and integrity of the surface epithelium. Infection of the intestine with V. cholerae O139 induces destruction of villi, microvilli and lining epithelium with exposure of crypts of Lieberkuhn.
    Matched MeSH terms: Vibrio cholerae O139/pathogenicity*
  19. Felsenfeld O
    Bull World Health Organ, 1963;28(3):289-96.
    PMID: 13962884
    The author discusses some of the features of the cholera epidemic caused by El Tor vibrios in 1961-62 in the Western Pacific. The disease originated in the Celebes and spread from there to other parts of Indonesia, to Sarawak and, possibly, to Kwangtung. Hong Kong and Macau were most probably infected from Kwangtung. Subsequently the disease reached the Philippines, progressing from Manila southwards to the other islands, whence it invaded British Borneo. The El Tor epidemic did not differ clinically or epidemiologically from other cholera outbreaks observed during the past decade. The disease attacked poor, under-nourished people living under insanitary conditions. It spread along the coastline and, to a limited extent, along inland waterways. The authorities in the affected territories recommended that the quarantine regulations, sanitary measures and treatment methods used against cholera caused by the so-called "true" cholera vibrios be applied also to cholera caused by El Tor vibrios.
    Matched MeSH terms: Vibrio cholerae*
  20. Tan KK, Sin KS, Ng AJ, Yahya H, Kaur P
    Singapore Med J, 1994 Dec;35(6):648-9.
    PMID: 7761898
    Non-O1 vibrio cholerae infections are associated with sporadic cases of gastroenteritis and extraintestinal infections. Septicaemia due to non-O1 vibrio cholerae is rare and are mainly reported in adults, particularly in immunocompromised patients. We report a case of non-O1 vibrio cholerae septicaemia and gastroenteritis in an 8-year-old child. The patient presented with bloody diarrhoea, fever and severe dehydration. Non-O1 vibrio cholerae were isolated from blood and stool cultures. The clinical course was uneventful after starting appropriate rehydration and supportive therapy.
    Matched MeSH terms: Vibrio cholerae/classification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links