Displaying all 13 publications

Abstract:
Sort:
  1. Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R
    Arch Virol, 2014 Apr;159(4):711-8.
    PMID: 24142271 DOI: 10.1007/s00705-013-1880-7
    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  2. Frimayanti N, Zain SM, Lee VS, Wahab HA, Yusof R, Abd Rahman N
    In Silico Biol. (Gedrukt), 2011;11(1-2):29-37.
    PMID: 22475750 DOI: 10.3233/ISB-2012-0442
    Publication year=2011-2012
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  3. Lim SV, Rahman MB, Tejo BA
    BMC Bioinformatics, 2011;12 Suppl 13:S24.
    PMID: 22373153 DOI: 10.1186/1471-2105-12-S13-S24
    The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  4. Law WY, Asaruddin MR, Bhawani SA, Mohamad S
    BMC Res Notes, 2020 Nov 11;13(1):527.
    PMID: 33176880 DOI: 10.1186/s13104-020-05379-6
    OBJECTIVES: The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions.

    RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.

    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  5. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  6. Rothan HA, Buckle MJ, Ammar YA, Mohammadjavad P, Shatrah O, Noorsaadah AR, et al.
    Trop Biomed, 2013 Dec;30(4):681-90.
    PMID: 24522138
    Various clinical symptoms are caused by dengue virus ranging from mild fever to severe hemorrhagic fever while there is no successful anti-dengue therapeutics available. Among different strategies towards identifying and developing anti-dengue therapeutics, testing anti-dengue properties of known drugs could represent an efficient strategy for which information of its medical approval, toxicity and side effects is readily available. In this study, we evaluated the antiviral activity of some medical compounds towards dengue NS2B-NS3 protease (DENV2 NS2B-NS3pro) as a target to inhibit dengue virus replication. Mefenamic acid, a non-steroid anti inflammatory drug and doxycycline, a derivative antibiotic of tetracycline both showed significant inhibition potential against DENV2 NS2B-NS3pro Ki values 32 ± 2 μM and 55 ± 5 μM respectively. The effective cytotoxic concentrations of 50% (CC50) against Vero cells were evaluated for mefenamic acid (150 ± 5 μM) and doxycycline (125 ± 4 μM). Concentrations lower than CC50 were used to test the inhibition potential of these compounds against DENV2 replication in Vero cells. The results showed significant reduction in viral load after applying mefenamic acid and doxycyline in concentration dependent manner. Mefenamic acid reduced viral RNA at EC50 of 32 ± 4 μM whilst doxycycline EC50 was 40 ± 3 μM. Mefenamic acid showed higher selectivity against dengue virus replication in vitro compared to doxycycline. These findings underline the need for further experimental and clinical studies on these drugs utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  7. Chong Teoh T, J Al-Harbi S, Abdulrahman AY, Rothan HA
    Molecules, 2021 Jul 16;26(14).
    PMID: 34299596 DOI: 10.3390/molecules26144321
    Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  8. Lim SK, Othman R, Yusof R, Heh CH
    Chem Biol Drug Des, 2021 01;97(1):28-40.
    PMID: 32657543 DOI: 10.1111/cbdd.13756
    Structure-based virtual screening (SBVS) has served as a popular strategy for rational drug discovery. In this study, we aimed to discover novel benzopyran-based inhibitors that targeted the NS3 enzymes (NS3/4A protease and NS3 helicase) of HCV G3 using a combination of in silico and in vitro approaches. With the aid of SBVS, six novel compounds were discovered to inhibit HCV G3 NS3/4A protease and two phytochemicals (ellagic acid and myricetin) were identified as dual-target inhibitors that inhibited both NS3/4A protease and NS3 helicase in vitro (IC50  = 40.37 ± 5.47 nm and 6.58 ± 0.99 µm, respectively). Inhibitory activities against the replication of HCV G3 replicons were further assessed in a cell-based system with four compounds showed dose-dependent inhibition. Compound P8 was determined to be the most potent compound from the cell-based assay with an EC50 of 19.05 µm. The dual-target inhibitor, ellagic acid, was determined as the second most potent (EC50  = 32.37 µm) and the most selective in its inhibitory activity against the replication of HCV replicons, without severely affecting the viability of the host cells (selectivity index > 6.18).
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  9. Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA
    Eur J Med Chem, 2019 Aug 15;176:431-455.
    PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010
    Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  10. Heh CH, Othman R, Buckle MJ, Sharifuddin Y, Yusof R, Rahman NA
    Chem Biol Drug Des, 2013 Jul;82(1):1-11.
    PMID: 23421589 DOI: 10.1111/cbdd.12122
    Various works have been carried out in developing therapeutics against dengue. However, to date, no effective vaccine or anti-dengue agent has yet been discovered. The development of protease inhibitors is considered as a promising option, but most previous works have involved competitive inhibition. In this study, we focused on rational discovery of potential anti-dengue agents based on non-competitive inhibition of DEN-2 NS2B/NS3 protease. A homology model of the DEN-2 NS2B/NS3 protease (using West Nile Virus NS2B/NS3 protease complex, 2FP7, as the template) was used as the target, and pinostrobin, a flavanone, was used as the standard ligand. Virtual screening was performed involving a total of 13 341 small compounds, with the backbone structures of chalcone, flavanone, and flavone, available in the ZINC database. Ranking of the resulting compounds yielded compounds with higher binding affinities compared with the standard ligand. Inhibition assay of the selected top-ranking compounds against DEN-2 NS2B/NS3 proteolytic activity resulted in significantly better inhibition compared with the standard and correlated well with in silico results. In conclusion, via this rational discovery technique, better inhibitors were identified. This method can be used in further work to discover lead compounds for anti-dengue agents.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  11. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  12. Andrieux-Meyer I, Tan SS, Thanprasertsuk S, Salvadori N, Menétrey C, Simon F, et al.
    Lancet Gastroenterol Hepatol, 2021 Jun;6(6):448-458.
    PMID: 33865507 DOI: 10.1016/S2468-1253(21)00031-5
    BACKGROUND: In low-income and middle-income countries, affordable direct-acting antivirals are urgently needed to treat hepatitis C virus (HCV) infection. The combination of ravidasvir, a pangenotypic non-structural protein 5A (NS5A) inhibitor, and sofosbuvir has shown efficacy and safety in patients with chronic HCV genotype 4 infection. STORM-C-1 trial aimed to assess the efficacy and safety of ravidasvir plus sofosbuvir in a diverse population of adults chronically infected with HCV.

    METHODS: STORM-C-1 is a two-stage, open-label, phase 2/3 single-arm clinical trial in six public academic and non-academic centres in Malaysia and four public academic and non-academic centres in Thailand. Patients with HCV with compensated cirrhosis (Metavir F4 and Child-Turcotte-Pugh class A) or without cirrhosis (Metavir F0-3) aged 18-69 years were eligible to participate, regardless of HCV genotype, HIV infection status, previous interferon-based HCV treatment, or source of HCV infection. Once daily ravidasvir (200 mg) and sofosbuvir (400 mg) were prescribed for 12 weeks for patients without cirrhosis and for 24 weeks for those with cirrhosis. The primary endpoint was sustained virological response at 12 weeks after treatment (SVR12; defined as HCV RNA <12 IU/mL in Thailand and HCV RNA <15 IU/mL in Malaysia at 12 weeks after the end of treatment). This trial is registered with ClinicalTrials.gov, number NCT02961426, and the National Medical Research Register of Malaysia, NMRR-16-747-29183.

    FINDINGS: Between Sept 14, 2016, and June 5, 2017, 301 patients were enrolled in stage one of STORM-C-1. 98 (33%) patients had genotype 1a infection, 27 (9%) had genotype 1b infection, two (1%) had genotype 2 infection, 158 (52%) had genotype 3 infection, and 16 (5%) had genotype 6 infection. 81 (27%) patients had compensated cirrhosis, 90 (30%) had HIV co-infection, and 99 (33%) had received previous interferon-based treatment. The most common treatment-emergent adverse events were pyrexia (35 [12%]), cough (26 [9%]), upper respiratory tract infection (23 [8%]), and headache (20 [7%]). There were no deaths or treatment discontinuations due to serious adverse events related to study drugs. Of the 300 patients included in the full analysis set, 291 (97%; 95% CI 94-99) had SVR12. Of note, SVR12 was reported in 78 (96%) of 81 patients with cirrhosis and 153 (97%) of 158 patients with genotype 3 infection, including 51 (96%) of 53 patients with cirrhosis. There was no difference in SVR12 rates by HIV co-infection or previous interferon treatment.

    INTERPRETATION: In this first stage, ravidasvir plus sofosbuvir was effective and well tolerated in this diverse adult population of patients with chronic HCV infection. Ravidasvir plus sofosbuvir has the potential to provide an additional affordable, simple, and efficacious public health tool for large-scale implementation to eliminate HCV as a cause of morbidity and mortality.

    FUNDING: National Science and Technology Development Agency, Thailand; Department of Disease Control, Ministry of Public Health, Thailand; Ministry of Health, Malaysia; UK Aid; Médecins Sans Frontières (MSF); MSF Transformational Investment Capacity; FIND; Pharmaniaga; Starr International Foundation; Foundation for Art, Research, Partnership and Education; and the Swiss Agency for Development and Cooperation.

    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*
  13. Rothan HA, Bahrani H, Mohamed Z, Abd Rahman N, Yusof R
    PLoS One, 2014;9(4):e94561.
    PMID: 24722532 DOI: 10.1371/journal.pone.0094561
    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links