Displaying all 6 publications

Abstract:
Sort:
  1. Kord-Varkaneh H, Rinaldi G, Hekmatdoost A, Fatahi S, Tan SC, Shadnoush M, et al.
    Ageing Res Rev, 2020 01;57:100996.
    PMID: 31816443 DOI: 10.1016/j.arr.2019.100996
    BACKGROUND: Inconsistencies exist with regard to influence of vitamin D supplementation on IGF-1 levels. The inconsistencies could be attributed to several factors, such as dosage and duration of intervention, among others. To address these inconsistencies, this study was conducted to determine the impact of vitamin D supplementation on IGF-1 levels through a systematic review and meta-analysis of randomized controlled trials (RCTs).

    METHODS: A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase for RCTs that investigated the impact of vitamin D intake on circulating IGF-1 levels from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating combined effect size. Subgroup analysis was performed to specify the source of heterogeneity among studies.

    RESULTS: Pooled results from eight studies demonstrated an overall non-significant increase in IGF-1 following vitamin D supplementation (WMD: 4 ng/ml, 95 % CI: -4 to 11). However, a significant degree of heterogeneity among studies was observed (I2 = 66 %). The subgroup analyses showed that vitamin D dosage of ≤1000 IU/day (WMD: 10 ng/ml) significantly increased IGF-1 compared to the vitamin D dosage of <1000 IU/day (WMD: -1 ng/ml). Moreover, intervention duration ≤12 weeks (WMD: 11 ng/ml) significantly increased IGF-1 compared to intervention duration <12 weeks (WMD: -3 ng/ml). In the epidemiological cohort study, participants under 60 years of age with a higher dietary vitamin D intake had significantly higher IGF-1 levels when compared to those with lower dietary vitamin D intake in second categories.

    CONCLUSION: The main results indicate a non-significant increase in IGF-1 following vitamin D supplementation. Additionally, vitamin D dosages of <1000 IU/day and intervention durations of <12 weeks significantly raised IGF-1 levels.

    Matched MeSH terms: Vitamin D/pharmacology*
  2. Shalayel MH, Al-Mazaideh GM, Aladaileh SH, Al-Swailmi FK, Al-Thiabat MG
    Pak J Pharm Sci, 2020 Sep;33(5):2179-2186.
    PMID: 33824127
    Novel coronavirus disease (COVID-19) has become a pandemic threat to public health. Vaccines and targeted therapeutics to prevent infections and stop virus proliferation are currently lacking. Endoribonuclease Nsp15 plays a vital role in the life cycle, including replication and transcription as well as virulence of the virus. Here, we investigated Vitamin D for its in silico potential inhibition of the binding sites of SARS-CoV-2 endoribonuclease Nsp15. In this study, we selected Remdesivir, Chloroquine, Hydroxychloroquine and Vitamin D to study the potential binding affinity with the putative binding sites of endoribonuclease Nsp15 of COVID-19. The docking study was applied to rationalize the possible interactions of the target compounds with the active site of endoribonuclease Nsp 15. Among the results, Vitamin D was found to have the highest potency with strongest interaction in terms of LBE, lowest RMSD, and lowest inhibition intensity Ki than the other standard compounds. The investigation results of endoribonuclease Nsp15 on the PrankWeb server showed that there are three prospective binding sites with the ligands. The singularity of Vitamin D interaction with the three pockets, particularly in the second pocket, may write down Vitamin D as a potential inhibitor of COVID-19 Nsp15 endoribonuclease binding sites and favour addition of Vitamin D in the treatment plan for COVID-19 alone or in combination with the other used drugs in this purpose, which deserves exploration in further in vitro and in vivo studies.
    Matched MeSH terms: Vitamin D/pharmacology*
  3. Shintani T, Higaki M, Rosli SNZ, Okamoto T
    In Vitro Cell Dev Biol Anim, 2024 Jun;60(6):583-589.
    PMID: 38713345 DOI: 10.1007/s11626-024-00913-3
    Heparin-binding protein 17 (HBp17), first purified in 1991 from the conditioned medium of the human A431 squamous cell carcinoma (SCC) cell line, was later renamed fibroblast growth factor-binding protein 1 (FGFBP-1). HBp17/FGFBP-1 is specifically expressed and secreted by epithelial cells, and it reversibly binds to fibroblast growth factor (FGF)-1 and FGF-2, as well as FGFs-7, -10, and -22, indicating a crucial involvement in the transportation and function of these FGFs. Our laboratory has investigated and reported several studies to elucidate the function of HBp17/FGFBP-1 in SCC cells and its potential as a molecular therapeutic target. HBp17/FGFBP-1 transgene exoression in A431-4 cells, a clonal subline of A431 that lacks tumorigenicity and does not express HBp17/FGFBP-1, demonstrated a significantly enhanced proliferation in vitro compared with A431-4 cells, and it acquired tumorigenicity in the subcutis of nude mice. Knockout (KO) of the HBp17/FGFBP-1 by genome editing significantly suppressed tumor growth, cell motility, and tumorigenicity compared with control cells. A comprehensive analysis of expressed molecules in both cell types revealed that molecules that promote epithelial cell differentiation were highly expressed in HBp17/FGFBP-1 KO cells. Additionally, we reported that 1α,25(OH)2D3 or eldecalcitol (ED-71), which is an analog of 1α,25(OH)2D3, suppresses HBp17/FGFBP-1 expression and tumor growth in vitro and in vivo by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Here, we discuss the prospects of molecular targeted therapy targeting HBp17/FGFBP-1 with 1α,25(OH)2D3 or ED71 in SCC and oral SCC.
    Matched MeSH terms: Vitamin D/pharmacology
  4. Zahra F, Sari DCR, Yuniartha R, Alex, Thamrin MM, Melindah T, et al.
    Med J Malaysia, 2024 Aug;79(Suppl 4):31-37.
    PMID: 39215412
    INTRODUCTION: Ischaemic stroke induces oxidative stress with SOD2 downregulation, and BAX upregulation producing apoptosis. Vitamin D is a fat-soluble hormone that has a neuroprotective effect. The aim of this study is to elucidate the role of vitamin D in memory function, oxidative stress and apoptosis in transient global brain schaemic injury (TGBII) model.

    MATERIALS AND METHODS: TGBII was performed in male Wistar rats (3 to 5 months, 150 to 300 g) which underwent bilateral common carotid artery occlusion (BCCAO) for 20 minutes, then reperfused for 10 days (BCCAO group, n = 6). Two groups of BCCAO were treated with intraperitoneal injection of calcitriol 0.125 μg/kgBW (VD1 group) and 0.5 μg/kgBW (VD2 group). The spatial memory function was tested using a probe test with Morris water maze (MWM). mRNA expression of BAX and SOD2 were assessed by the RT-PCR method. Meanwhile, immunohistochemical staining was used for identification of SOD2 protein. Statistical analysis is tested using one-way ANOVA followed by post-hoc LSD.

    RESULTS: MWM showed a shorter duration in target quadrant of BCCAO group than the SO group, which is associated with BAX upregulation and SOD2 downregulation. The VDtreated groups had longer duration probe test compared to BCCAO. Furthermore, VD-treated groups had a longer duration in probe test with lower mRNA expression of BAX and higher expression of SOD2. However, there was no significant difference in VD1 and VD2. Immunostaining showed a reduced SOD2 signal in pyramidal cell of CA1 area in BCCAO group and ameliorated in VD1 and VD2 groups.

    CONCLUSION: Vitamin D ameliorates memory function and attenuates oxidative stress and apoptosis in the TGBII model.

    Matched MeSH terms: Vitamin D/pharmacology
  5. Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, et al.
    Nutrients, 2019 Oct 19;11(10).
    PMID: 31635074 DOI: 10.3390/nu11102525
    This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer's disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
    Matched MeSH terms: Vitamin D/pharmacology*
  6. Abukhadir SS, Mohamed N, Mohamed N
    Curr Drug Targets, 2013 Dec;14(13):1601-10.
    PMID: 24138635
    Osteoporosis is the most common bone disease in humans; it represents a major public health problem. This chronic disease is characterized by increase in bone fracture due to: reduced bone mass, deterioration of micro architectural and decreased bone strength, bone fragility; and bone mineral density 2.5 or more standard deviations below the normal mean. Secondary osteoporosis is a common cause of osteoporosis, and there are many underlying risk factors for osteoporosis. Chronic alcohol abuse is one of the modifiable risk factors in osteoporosis. There is evidence of correlation between chronic alcohol abuse and low bone mass. Alcohol is directly toxic to the bone; with increased incidence of fractures and complications. Although there is a paucity of studies regarding alcohol induced osteoporosis therapy, it can be classified into antiresorptive therapy and anabolic therapy. Bisphosphonates have been demonstrated to be clinically relevant to prevent bone damage associated with alcohol use while parathyroid hormone increased bone mineralization as well as bone formation in alcohol treated rats. Vitamin D supplementation could prevent bone toxicity in chronic drinkers. This review discussed the pathogenesis of alcohol-induced osteoporosis and the agents available for its treatment. Other potential therapies are also discussed.
    Matched MeSH terms: Vitamin D/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links