A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
Kadazans, the largest indigenous group in Sabah, northern Borneo, were surveyed for glyoxalase I, phosphoglucomutase I, red cell acid phosphatase, esterase D, adenosine deaminase, soluble glutamate pyruvate transaminase, soluble glutamate oxaloacetate transaminase, 6-phosphogluconate dehydrogenase, uridine monophosphate kinase, adenylate kinase, peptidase B and D, superoxide dismutase, C5, group specific component, haptoglobin and transferrin. Kadazans were found to be polymorphic for GLO I, PGM I, RCAP, esterase D, ADA, s-Gpt, 6PGD, UMPK, Gc, C5, haptoglobin and peptidase B. Rare variants were found for transferrin and peptidase D. No variant was found for s-Got, SOD and AK.
A total of 640 Malaysians, 355 of Malay, 155 of Chinese, and 130 of Indian ancestries have been examined for saliva acid phosphatases. The three ethnic groups were polymorphic for saliva acid phosphatase A (Sap-A) and saliva acid phosphatase (B (Sap-B). The gene frequencies were: Sap-A, Malays: A = 0.469, A' = 0.001, A degrees = 0.530; Chinese: A = 0.436, A' = 0.010, A degrees = 0.555; Indians: A = 0.533, A' = 0.012, A degrees = 0.456. For Sap-B, Malays: B = 0.925, B degrees = 0.075; Chinese: B = 0.797, B1 = 0.016, B degrees = 0.187; Indians: B 0.752, B degrees = 0.248. Phenotype ABB1 is described.
We have developed the methodologies for typing and family studies to establish the modes of inheritance of water buffalo red cell acid phosphatase (Acp), protease inhibitor (Pi), and group-specific component (Gc) on isoelectric focusing and albumin (Alb), red cell alpha-esterase-3 (Est-3), and catalase (Cat) on polyacrylamide gel electrophoresis. Family studies showed that Pi, Gc, Alb, and Cat are coded by autosomal genes with two codominant alleles, while Est-3 is autosomal with two codominant alleles and a recessive null allele and Acp exhibits three codominant alleles.
Four red cell enzyme systems were studied in Malaysian mothers and their newborn belonging to three racial groups, the Malays, Indians and Chinese. No significant heterogeneity was observed in the distribution of phosphoglucomutase (PGM1), adenosine deaminase (ADA), 6-phosphogluconate dehydrogenase (6PGD) and acid phosphatase (AP) phenotypes between mothers and their newborn of the three groups. Pooled mother and child acid phosphatase data show a significant heterogeneity between the Malays and Chinese, and between the Malays and Indians. This is comparable to previous studies conducted. For the placental phosphoglucomutase (PGM3) system, a significant heterogeneity was observed between the Chinese and Malays only. No significant heterogeneity was detected in the distribution of PGM1, ADA and 6PGD phenotypes among Malays, Chinese and Indians.