We report one-pot synthesis of a series of new 3-aryl-8-methylquinazolin-4(3H)-ones (QNZ) and their antimicrobial activity against Acanthamoeba castellanii belonging to T4 genotype. A library of fifteen synthetic derivatives of QNZs was synthesized, and their structural elucidation was performed by using nuclear magnetic resonance (NMR) spectroscopy and electron impact mass spectrometry (EI-MS). Elemental analyses and high-resolution mass spectrometry data of all derivatives were found to be in agreeable range. Amoebicidal assays performed at concentrations ranging from 50 to 100 μg/mL revealed that all derivatives of QNZ significantly decreased the viability of A. castellanii and QNZ 2, 5, 8, and 13 were found to have efficient antiamoebic effects. Field emission scanning electron microscopy (FESEM) imaging of amoeba treated with compounds 5 and 15 showed that these compounds cause structural alterations on the walls of A. castellanii. Furthermore, several QNZs inhibited the encystation and excystationas as well as abolished A. castellanii-mediated host cells cytopathogenicity in human cells. Whereas, these QNZs showed negligible cytotoxicity when tested against human cells in vitro. Hence, this study identified potential lead molecules having promising properties for drug development against A. castellanii. A brief structure-activity relationship is also developed to optimize the hit of most potent compounds from the library. To the best of our knowledge, it is first of its kind medicinal chemistry approach on a single class of compounds i.e., quinazolinone against keratitis and brain infection causing free-living amoeba, A. castellanii.
Tetrazoles are five-membered ring aromatic heterocyclic molecules that consist of one carbon and four nitrogen atoms. Several tetrazole-based drugs have shown promising activities against bacteria, fungi, asthma, cancer, hypertension etc. The overall aim of this study was to determine anti-Acanthamoebic properties of tetrazoles and tetrazole-conjugated silver nanoparticles. Tetrazole-conjugated silver nanoparticles were synthesized and confirmed using ultraviolet-visible spectrometry, Dynamic light scattering, and Fourier-transform infrared spectroscopy. Using amoebicidal, encystment, and excystment assays, the findings revealed that tetrazoles exhibited antiamoebic properties and these effects were enhanced when conjugated with silver nanoparticles. Importantly, conjugation with silver nanoparticles inhibited parasite-mediated human cell death in vitro, as measured by lactate dehydrogenase release, but it reduced toxic effects of drugs alone on human cells. Overall, these results showed clearly that tetrazoles exhibit potent antiamoebic properties which can be enhanced by conjugation with silver nanoparticles and these potential in the rational development of therapeutic interventions against parasitic infections such as keratitis and granulomatous amoebic encephalitis due to pathogenic Acanthamoeba.
Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
Acanthamoeba castellanii is a free-living amoeba which can cause a blinding keratitis and fatal granulomatous amoebic encephalitis. The treatment of Acanthamoeba infections is challenging due to formation of cyst. Quinazolinones are medicinally important scaffold against parasitic diseases. A library of nineteen new 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives was synthesized to evaluate their antiamoebic activity against Acanthamoeba castellanii. One-pot synthesis of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-ones (1-19) was achieved by reaction of 2-amino-4,5-dimethoxybenzoic acid, trimethoxymethane, and different substituted anilines. These compounds were purified and characterized by standard chromatographic and spectroscopic techniques. Antiacanthamoebic activity of these compounds was determined by amoebicidal, encystation, excystation and host cell cytopathogenicity in vitro assays at concentrations of 50 and 100 μg/mL. The IC50 was found to be between 100 and 50 μg/mL for all the compounds except compound 5 which did not exhibit amoebicidal effects at these concentrations. Furthermore, lactate dehydrogenase assay was also performed to evaluate the in vitro cytotoxicity of these compounds against human keratinocyte (HaCaT) cells. The results revealed that eighteen out of nineteen derivatives of quinazolinones significantly decreased the viability of A. castellanii. Furthermore, eighteen out of nineteen tested compounds inhibited the encystation and excystation, as well as significantly reduced the A. castellanii-mediated cytopathogenicity against human cells. Interestingly, while tested against human normal cell line HaCaT keratinocytes, all compounds did not exhibit any overt cytotoxicity. Furthermore, a detailed structure-activity relationship is also studied to optimize the most potent hit from these synthetic compounds. This report presents several potential lead compounds belonging to 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives for drug discovery against infections caused by Acanthamoeba castellanii.
Infectious diseases are the leading cause of morbidity and mortality, killing more than 15 million people worldwide. This is despite our advances in antimicrobial chemotherapy and supportive care. Nanoparticles offer a promising technology to enhance drug efficacy and formation of effective vehicles for drug delivery. Here, we conjugated amphotericin B, nystatin (macrocyclic polyenes), and fluconazole (azole) with silver nanoparticles. Silver-conjugated drugs were synthesized successfully and characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Conjugated and unconjugated drugs were tested against Acanthamoeba castellanii belonging to the T4 genotype using amoebicidal assay and host cell cytotoxicity assay. Viability assays revealed that silver nanoparticles conjugated with amphotericin B (Amp-AgNPs) and nystatin (Nys-AgNPs) exhibited significant antiamoebic properties compared with drugs alone or AgNPs alone (P
Acanthamoeba castellanii is the causative agent of blinding keratitis. Though reported in non-contact lens wearers, it is most frequently associated with improper use of contact lens. For contact lens wearers, amoebae attachment to the lens is a critical first step, followed by amoebae binding to the corneal epithelial cells during extended lens wear. Acanthamoeba attachment to surfaces (biological or inert) and migration is an active process and occurs during the trophozoite stage. Thus retaining amoebae in the cyst stage (dormant form) offers an added preventative measure in impeding parasite traversal from the contact lens onto the cornea. Here, we showed that as low as 3% DMSO, abolished A. castellanii excystation. Based on the findings, it is proposed that DMSO should be included in the contact lens disinfectants as an added preventative strategy against contracting Acanthamoeba keratitis.
Brain-eating amoebae cause devastating infections in the central nervous system of humans, resulting in a mortality rate of 95%. There are limited effective therapeutic options available clinically for treating granulomatous amoebic encephalitis and primary amoebic meningoencephalitis caused by Acanthamoeba castellanii (A. castellanii) and Naegleria fowleri (N. fowleri), respectively. Here, we report for the first time that guanabenz conjugated to gold and silver nanoparticles has significant antiamoebic activity against both A. castellanii and N. fowleri. Gold and silver conjugated guanabenz nanoparticles were synthesized by the one-phase reduction method and were characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both metals were facilely stabilized by the coating of guanabenz, which was examined by surface plasmon resonance determination. The average size of gold nanoconjugated guanabenz was found to be 60 nm, whereas silver nanoparticles were produced in a larger size distribution with the average diameter of around 100 nm. Guanabenz and its noble metal nanoconjugates exhibited potent antiamoebic effects in the range of 2.5 to 100 μM against both amoebae. Nanoparticle conjugation enhanced the antiamoebic effects of guanabenz, as more potent activity was observed at a lower effective concentration (2.5 and 5 μM) compared to the drug alone. Moreover, encystation and excystation assays revealed that guanabenz inhibits the interconversion between the trophozoite and cyst forms of A. castellanii. Cysticdal effects against N. fowleri were also observed. Notably, pretreatment of A. castellanii with guanabenz and its nanoconjugates exhibited a significant reduction in the host cell cytopathogenicity from 65% to 38% and 2% in case of gold and silver nanoconjugates, respectively. Moreover, the cytotoxic evaluation of guanabenz and its nanoconjugates revealed negligible cytotoxicity against human cells. Guanabenz is already approved for hypertension and crosses the blood-brain barrier; the results of our current study suggest that guanabenz and its conjugated gold and silver nanoparticles can be repurposed as a potential drug for treating brain-eating amoebic infections.
Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.