Displaying all 6 publications

Abstract:
Sort:
  1. Sahimin N, Lim YAL, Douadi B, Mohd Khalid MKN, Wilson JJ, Behnke JM, et al.
    Acta Trop, 2017 Sep;173:109-115.
    PMID: 28610937 DOI: 10.1016/j.actatropica.2017.06.011
    Ongoing urbanisation of the working population as well as cross-border migration of workers particularly into large cities has contributed to the development and growth of urban slums. These deprived areas are conducive for the transmission of intestinal pathogens including hookworm. The aim of this study was to determine both the prevalence and species identity of hookworm infections among the migrant worker community in Malaysia. A total of 388 faecal samples were collected from migrant workers between September 2014 and August 2015, representing workers from five employment sectors: construction, manufacturing, agriculture and plantations, food services and domestic services. Faecal samples were examined by microscopy and positive samples were subjected to molecular analysis. A total of 51 samples (13.1%) were positive by microscopy for hookworm infections. A two-step PCR based method amplifying a fragment of the 28S rRNA-ITS2 region was used to identify infections by Necator americanus and Ancylostoma spp. PCR products positive for Ancylostoma spp. were sequenced bidirectionally, and sequences analysed through BLAST and phylogenetic analysis. Samples containing Ancylostoma duodenale were further characterized by amplification and sequencing a fragment of cytochrome c oxidase subunit 1 (cox1) gene. PCR amplicons were successfully obtained from 42 (82.4%) of 51 samples, with 81.0% (34 of 42) identified as Necator americanus, 16.7% (7 of 42) as Ancylostoma spp. and 2.4% (1 of 42) as mixed infections of both species. All eight Ancylostoma spp. were confirmed to be Ancylostoma duodenale and this is the first time A. duodenale was reported in Malaysia. Samples containing A. duodenale from Nepalese and Indonesian workers shared high-similarity and were distinct compared to sequences from other countries. This study highlights the prevalence of hookworm infections among migrant workers living in Malaysia. Our findings underscore the necessity of screening migrant workers for hookworm infections, particularly those working in food-related services and industries.
    Matched MeSH terms: Ancylostoma/genetics*
  2. Ngui R, Lim YA, Chua KH
    PLoS One, 2012;7(7):e41996.
    PMID: 22844538 DOI: 10.1371/journal.pone.0041996
    Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species.
    Matched MeSH terms: Ancylostoma/genetics
  3. Ngui R, Mahdy MA, Chua KH, Traub R, Lim YA
    Acta Trop, 2013 Oct;128(1):154-7.
    PMID: 23774318 DOI: 10.1016/j.actatropica.2013.06.003
    Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation.
    Matched MeSH terms: Ancylostoma/genetics*
  4. Ngui R, Lim YA, Traub R, Mahmud R, Mistam MS
    PLoS Negl Trop Dis, 2012;6(2):e1522.
    PMID: 22347515 DOI: 10.1371/journal.pntd.0001522
    BACKGROUND: Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.

    METHODS/FINDINGS: A total of 634 human and 105 domestic canine and feline fecal samples were randomly collected. The overall prevalence of hookworm in humans and animals determined via microscopy was 9.1% (95% CI = 7.0-11.7%) and 61.9% (95% CI = 51.2-71.2%), respectively. Multivariate analysis indicated that participants without the provision of proper latrine systems (OR = 3.5; 95% CI = 1.53-8.00; p = 0.003), walking barefooted (OR = 5.6; 95% CI = 2.91-10.73; p<0.001) and in close contact with pets or livestock (OR = 2.9; 95% CI = 1.19-7.15; p = 0.009) were more likely to be infected with hookworms. Molecular analysis revealed that while most hookworm-positive individuals were infected with Necator americanus, Ancylostoma ceylanicum constituted 12.8% of single infections and 10.6% mixed infections with N. americanus. As for cats and dogs, 52.0% were positive for A. ceylanicum, 46.0% for Ancylostoma caninum and 2.0% for Ancylostoma braziliense and all were single infections.

    CONCLUSION: This present study provided evidence based on the combination of epidemiological, conventional diagnostic and molecular tools that A. ceylanicum infection is common and that its transmission dynamic in endemic areas in Malaysia is heightened by the close contact of human and domestic animal (i.e., dogs and cats) populations.

    Matched MeSH terms: Ancylostoma/genetics
  5. Hu W, Yu XG, Wu S, Tan LP, Song MR, Abdulahi AY, et al.
    J Helminthol, 2016 Jul;90(4):392-7.
    PMID: 26123649 DOI: 10.1017/S0022149X15000413
    Ancylostoma ceylanicum is a common zoonotic nematode. Cats act as natural reservoirs of the hookworm and are involved in transmitting infection to humans, thus posing a potential risk to public health. The prevalence of feline A. ceylanicum in Guangzhou (South China) was surveyed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In total, 112 faecal samples were examined; 34.8% (39/112) and 43.8% (49/112) samples were positive with hookworms by microscopy and PCR method, respectively. Among them, 40.8% of samples harboured A. ceylanicum. Twelve positive A. ceylanicum samples were selected randomly and used for cox 1 sequence analysis. Sequencing results revealed that they had 97-99% similarity with A. ceylanicum cox 1 gene sequences deposited in GenBank. A phylogenetic tree showed that A. ceylanicum isolates were divided into two groups: one comprising four isolates from Guangzhou (South China), and the other comprising those from Malaysia, Cambodia and Guangzhou. In the latter group, all A. ceylanicum isolates from Guangzhou were clustered into a minor group again. The results indicate that the high prevalence of A. ceylanicum in stray cats in South China poses a potential risk of hookworm transmission from pet cats to humans, and that A. ceylanicum may be a species complex worldwide.
    Matched MeSH terms: Ancylostoma/genetics
  6. Ngui R, Ching LS, Kai TT, Roslan MA, Lim YA
    Am J Trop Med Hyg, 2012 May;86(5):837-42.
    PMID: 22556084 DOI: 10.4269/ajtmh.2012.11-0446
    Species identification of human hookworm infections among eight communities in rural areas of Peninsular Malaysia was determined during 2009-2011. Fecal samples were examined by microscopy and subsequently, the internal transcribed spacer 2 and 28S ribosomal RNA region of Necator americanus and Ancylostoma spp. were sequenced. Overall, 9.1% (58 of 634) were identified positive by microscopy for hookworm infection, and 47 (81.0%) of 58 were successfully amplified and sequenced. Sequence comparison found that N. americanus (87.2%) was the most predominant hookworm identified, followed by Ancylostoma ceylanicum (23.4%). No A. duodenale infection was detected in this study. Detection of A. ceylanicum in humans highlighted the zoonotic transmission among humans living near dogs. Thus, implementation of effective control measures for hookworm infections in future should seriously consider this zoonotic implication.
    Matched MeSH terms: Ancylostoma/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links